
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ChatGPT: Embeddingで独自データに基づくQ&Aを実装する (Langchain不使用) - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
ChatGPT: Embeddingで独自データに基づくQ&Aを実装する (Langchain不使用) - Qiita
こんにちは、ChatGPTに自社のデータや、専門的な内容のテキストに基づいて回答を作成して欲しいという需... こんにちは、ChatGPTに自社のデータや、専門的な内容のテキストに基づいて回答を作成して欲しいという需要はかなりあるのではないかと思います。 そうした用途のために、LangchainやLlama-indexを使用した解説が多く公開されていますが、OpenAIのcookbookにはライブラリを使わずにEmbeddingsを使用したサーチとクエリを実装する方法が解説されています。個人的な経験として、ライブラリベースで実装をすると、日本語のテキスト分割が微妙だったり、LLMの回答が英語になってしまったりと、余計に事態が複雑化して、なんだかなぁ〜という結果になりがちです。 この記事では、主に以下のドキュメントを参考にして、ベクトルデータベースにデータを保存するなど変更を加えています。間違いや、もっとこうした方がいいよ、などコメントありましたら、ぜひお願い致します。 作ってみるもの Wikiped