エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
【コード検証中】【精度対決】リアルな画像で異常検知 - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
【コード検証中】【精度対決】リアルな画像で異常検知 - Qiita
SSIMオートエンコーダ(論文より引用) SSIMを適用する窓のサイズは11 x 11 オートエンコーダの入力画像... SSIMオートエンコーダ(論文より引用) SSIMを適用する窓のサイズは11 x 11 オートエンコーダの入力画像サイズは256 x 256 潜在変数は100 学習データはDataAugmentationにより10,000個に増幅 metric learning 学習データは上記4種類のデータ全てを渡しました。つまり、968個のデータです。 入力画像サイズは224 x 224 今回使うmetric learningはL2 SoftmaxLoss epochは50、最適化手法はSGD バッチサイズは128 ベースモデルはMobileNet V2($\alpha=0.5$)(学習済モデルを使用、つまり転移学習) 異常スコアはLOFで算出 10回試行して、それぞれの試行で再現率と特異度の和が高いものを採用 アンサンブル異常検知 metric learningについて、更なる高精度を目指してアンサ