エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント8件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Raspberry Pi4 単体で TensorFlow Lite はどれくらいの速度で動く? - Qiita
1. はじめに 世の中にはDeepLearningの学習済みモデルを公開してくださっている方がたくさんいらっしゃ... 1. はじめに 世の中にはDeepLearningの学習済みモデルを公開してくださっている方がたくさんいらっしゃいます。本記事は、そのうちのいくつかをラズパイ4で動かしてみて、いったいどれくらいの速度で動くのかを検証したものです。 計測対象モデルとして、Mediapipe および TensorFlow.js、TensorFlow Lite models で公開されている学習済みモデルを利用させて頂きました。またモデル実行フレームワークとしては、モバイル向けに整備が進む TensorFlow Lite (C++) を用いました。 計測にあたっては、公開されているモデルをそのまま動かすだけでなく、一般的な高速化手法である下記の2手法を両方試し、その効果も計測しました。 [1] モデルをint8量子化する方法 演算精度に多少目をつぶる代わりに、NEON等のSIMD演算器による並列処理の並列度をさ
2020/07/15 リンク