エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
【論文5分まとめ】A ConvNet for the 2020s
この記事は、論文の内容を5分くらいで読めるようにまとめた記事です。そのため、前提となる知識や関連研... この記事は、論文の内容を5分くらいで読めるようにまとめた記事です。そのため、前提となる知識や関連研究に関する説明は大幅に省略しています。 基本的には筆者の備忘録ですが、面白そうと思ったら是非ご自身でも読んでみてください。 概要 Vision Transformer以降、Visionの世界の中心はConvNetからTransformerへと移りつつある。しかし、ConvNetの設計空間は後発のTransformerのようには十分に「近代化」されておらず、古い慣習が残ったままであることも確かである。 本研究では、ConvNetの設計空間を再検討したConvNeXtを提案している。ConvNeXtは標準的なConvNetモジュールから構成され、標準的なConvNetのシンプルさと効率性を維持しながら、精度や拡張性において最先端のTransformer系手法と遜色なく、87.8%のImageNet
2022/01/26 リンク