こんにちは。 前回、モデルを選択する基準のところで情報量基準という言葉をちょこっと出して、そのままスルーしました。しかし、データ分析においては重要なのでとりあえずその基礎くらいは知っておきましょう。ちなみにコードを書く際にパラメータ選択させられることもあります。 ではそもそも情報量基準とはなんなのか? 機械学習におけるとりあえずの目標は学習です。言い換えれば目的関数のerrorを最小化することです。線形回帰などは最適解があり、数式を解けるので最適なパラメータが得られるのですが、前回も言ったようにskip functionのないニューラルネットワークを始め多くのモデルは最適解を得ることが容易ではないです。そこでランダムな値からパラメータを変動させていくのでした。この際、errorが減少するようにパラメータを更新する、つまり、勾配の逆方向に動かすのでした。 では、ここで出る問題は errorが