AlexNet [A Krizhevsky, 2012] このページはDeep Learningモデルを使って画像認識をする方法を一通り学ぶ初心者向け実習教材として作られました。 ここではPython環境でCaffeフレームワークを利用して画像認識モデルを学習、評価する方法を学ぶことができます。 準備 0. Docker+Jupyter環境の構築 1. Pythonと数値計算 1a. Pythonと数値計算 練習問題解答 画像認識 2. Caffeを使った画像分類 3. 手書き文字認識モデルの学習 4. 学習済みのネットワークをマルハナバチ分類にファインチューニング その他 5. Caffeの動作環境に関して 参考 スライド資料 Caffe deep learning framework Stanford CS231n: Convolutional Neural Networks for
Schedule and Syllabus The Spring 2020 iteration of the course will be taught virtually for the entire duration of the quarter. (more information available here ) Unless otherwise specified the lectures are Tuesday and Thursday 12pm to 1:20pm. Discussion sections will (generally) be Fridays 12:30pm to 1:20pm. Check Piazza for any exceptions. Lectures and discussion sections will be both on Zoom, an
Course Logistics Lectures: Tuesday/Thursday 12:00-1:20PM Pacific Time at NVIDIA Auditorium. Lecture Videos: Will be posted on Canvas shortly after each lecture. These are unfortunately only accessible to enrolled Stanford students. Office Hours: We will be holding a mix of in-person and Zoom office hours. You can find a full list of times and locations on the calendar. Contact: Announcements and a
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く