You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
機械学習をやっている人なら誰もが遭遇したであろうこの光景 (※写真はPyTorchのLanguage ModelのExampleより) Pythonのargparseでシェルから引数を受け取りPythonスクリプト内でパラメータに設定するパターンは、記述が長くなりがちな上、どのパラメータがmodel/preprocess/optimizerのものなのか区別がつきにくく見通しが悪いといった課題があります。 私は実験用のパラメータ類は全てYAMLに記述して管理しています。 YAMLで記述することでパラメータを階層立てて構造的に記述することができ、パラメータの見通しがぐっとよくなります。 preprocess: min_df: 3 max_df: 1 replace_pattern: \d+ model: hidden_size: 256 dropout: 0.1 optimizer: algo
. ├── main.py # メインのPythonスクリプト(Hydraの設定と実行が含まれる) ├── conf # 設定ファイルが格納されるディレクトリ │ └── config.yaml # Hydraによって読み込まれる主要な設定ファイル ├── outputs # Hydraによって自動生成される出力ディレクトリ │ └── [タイムスタンプ] # 各実行(ジョブ)に基づいて生成されるサブディレクトリ │ ├── config.yaml # 実行時の設定ファイルのコピー │ └── ... # その他の出力(ログファイルなど) └── multirun # multirunオプションで自動生成されるディレクトリ └── [タイムスタンプ] ├── 0 # ナンバリングされたジョブディレクトリ │ ├── config.yaml # 実行時の設定ファイルのコピー │ └── ..
Two major methods can be considered for hyperparameter management in machine learning. Configuring hyperparameters from the command line using argparse Hyperparameter management via configuration filesAn Example of a Typical Hyperparameter ManagementWhen using argparse for managing hyperparameters, it is convenient to change them directly from the command line, but the number of hyperparameters to
こんにちは。カスタマーサクセス部 リサーチャーの坂田です。 レトリバでは、固有表現抽出、分類、PoC用ツール作成に取り組んでいます。 PoC用ツール作成は、研究成果をより迅速にPoCで試せることを狙いとしています。 実験結果の可視化UIが充実しているMLFlow を中心に、足りないところを補うため、その他のツールとの組み合わせについて考えていきます。 MLFlow MLFlow は、実験管理からデプロイまでカバーしたツールです。特定のツールに依存しないということに重きを置いています。 4つのコンポーネントに分かれており、必要な機能のみを使えるようになっています。 MLflow Tracking : パラメータ、コードのバージョン管理、生成物の捕捉などを行う機能など。 MLflow Projects : 再現性を担保するための機能など。 MLflow Models : デプロイの支援機能など
AI Labの岩崎(@chck)です、こんにちは。今日は実験管理、広義ではMLOpsの話をしたいと思います。 MLOpsはもともとDevOpsの派生として生まれた言葉ですが、本稿では本番運用を見据えた機械学習ライフサイクル(実験ログやワークフロー)の管理を指します。 https://www.slideshare.net/databricks/mlflow-infrastructure-for-a-complete-machine-learning-life-cycle 参考記事のJan Teichmann氏の言葉を借りると、 エンジニアがDevOpsによって健全で継続的な開発・運用を実現している一方、 多くのデータサイエンティストは、ローカルでの作業と本番環境に大きなギャップを抱えている クラウド含む本番環境でのモデルのホスティングが考慮されないローカルでの作業 本番のデータボリュームやス
Optuna™は、オープンソースのハイパーパラメーター自動最適化フレームワークです。 「Optuna Meetup #1」では、Optunaのユーザー、導入を検討している方、また開発者を中心に、Optunaの様々な活用方法が共有されました。中村氏は、Hydra・MLflow・Optunaを組み合わせたハイパーパラメーター管理について発表しました。 ふだんは音声合成と声質変換技術などの音声を用いる技術を研究 中村泰貴氏(以下、中村):「HydraとMLflowとOptunaの組み合わせで手軽に始めるハイパーパラメータ管理」というタイトルで、東京大学大学院情報理工学系研究科の修士課程2年の中村が発表します。 軽く自己紹介ですが、先ほど述べたように情報理工学系研究科の、猿渡・小山研究室の修士課程2年です。音声合成に関する技術をふだん研究しています。「Twitter」をやっているので、ぜひフォロー
No boilerplateHydra lets you focus on the problem at hand instead of spending time on boilerplate code like command line flags, loading configuration files, logging etc. Powerful configurationWith Hydra, you can compose your configuration dynamically, enabling you to easily get the perfect configuration for each run. You can override everything from the command line, which makes experimentation fa
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く