The first and most important step towards developing a powerful machine learning model is acquiring good data. It doesn’t matter if you’re using a simple logistic regression or the fanciest state-of-the-art neural network to make predictions: If you don’t have rich input, your model will be garbage in, garbage out. This exposes an unfortunate truth that every hopeful, young data scientist has to c
18 Jul 2012 Here I list a handful of code patterns that I wish I was more aware of when I started my PhD. Each on its own may seem pointless, but collectively they go a long way towards making the typical research workflow more efficient. And an efficient workflow makes it just that little bit easier to ask the research questions that matter. My guess is that these patterns will not only be useful
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く