新たにリリースされた Recraft V3 は、Hugging Face ベンチマーク・リーダーボードの txt2imge 分野で FLUX1.1[pro] よりも上位になり話題を呼んでいます。 Recraft V3 :…
新たにリリースされた Recraft V3 は、Hugging Face ベンチマーク・リーダーボードの txt2imge 分野で FLUX1.1[pro] よりも上位になり話題を呼んでいます。 Recraft V3 :…
Machine Learning with TensorFlow gives readers a solid foundation in machine-learning concepts plus hands-on experience coding TensorFlow with Python. about the technology TensorFlow, Google's library for large-scale machine learning, simplifies often-complex computations by representing them as graphs and efficiently mapping parts of the graphs to machines in a cluster or to the processors of a s
TensorFlow is an open source library for numerical computation, specializing in machine learning applications. What you will build In this codelab, you will learn how to run TensorFlow on a single machine, and will train a simple classifier to classify images of flowers. Image CC-BY by Retinafunk daisy (score = 0.99071) sunflowers (score = 0.00595) dandelion (score = 0.00252) roses (score = 0.0004
Watch Google's Jeff Dean talk about Google Brain and the Brain Residency Program. Jeff will will discuss the current state of the Google Brain Team, Tensorflow, the future directions of Brain and tell you a bit more about our Google Brain Residency Program (2017 application open now! https://goo.gl/Z4TtnQ). Check out g.co/brain for more info! The first part of the video gives an overview of the wo
TensorFlow Raspberry Pi Examples This folder contains examples of how to build applications for the Raspberry Pi using TensorFlow. Building the Examples Follow the Raspberry Pi section of the instructions at tensorflow/contrib/makefile to compile a static library containing the core TensorFlow code. Install libjpeg, so we can load image files: sudo apt-get install -y libjpeg-dev To download the ex
Adventures in deep learning, cheap hardware, and object recognition. Object recognition is one of the most exciting areas in machine learning right now. Computers have been able to recognize objects like faces or cats reliably for quite a while, but recognizing arbitrary objects within a larger image has been the Holy Grail of artificial intelligence. Maybe the real surprise is that human brains r
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? これ書くだけで土日2日間まるまる潰れてしまった。 学んだ内容に沿っているので、順に読み進めるに従ってコードの話になっていきます。 Tensorflow触ってみたい/みたけど、いろいろまだ理解できてない!という方向けに書きました。 ※2018年10月4日追記 大分古い記事なのでリンク切れや公式ドキュメントが大分変更されている可能性が高いです。 この記事のTensorflowは ver0.4~0.7くらいだった気がするので ver2.0~となりそうな現在は文章の大半が何を参考にしているのか分からないかもしれません。 1: Deep Lear
README.md Show and Tell: A Neural Image Caption Generator A TensorFlow implementation of the image-to-text model described in the paper: "Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge." Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan. IEEE transactions on pattern analysis and machine intelligence (2016). Full text available at: http://arxiv.org/abs/1609
Google’s new Project Muze proves machines aren’t that great at fashion design Google’s AI technology may be capable of putting on a trippy art show — thanks to its neural network-powered DeepDream computer vision program — but when Google turned its machine learning technology to the world of fashion via its new experiment Project Muze, the results were less than compelling. Designed in partnershi
アイドル顔識別のためのデータ収集 をコツコツ続けて それなりに集まってきたし、これを使って別のことも…ということでDCGANを使ったDeep Learningによるアイドルの顔画像の「生成」をやってみた。 まだだいぶ歪んでいたりで あまりキレイじゃないけど…。顔画像を多く収集できているアイドル90人の顔画像からそれぞれ120件を抽出した合計10800件をもとに学習させて生成させたもの。 分類タスクとは逆方向の変換、複数のモデル定義などがあってなかなか理解が難しい部分もあったけど、作ってみるとそこまで難しくはなく、出来上がっていく過程を見るのが楽しいし とても面白い。 DCGANとは "Deep Convolutional Generative Adversarial Networks"、略してDCGAN。こちらの論文で有名になった、のかな? [1511.06434] Unsupervise
Read it now on the O’Reilly learning platform with a 10-day free trial. O’Reilly members get unlimited access to books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers. With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this p
ここ1年くらいDeep Learning Tutorialを読みながらTheanoというライブラリで深層学習のアルゴリズムを実装してきた。 深層学習の基本的なアルゴリズムならTheanoでガリガリ書くこともできたがより高度なアルゴリズムをTheanoでスクラッチから書くのはとてもきつい*1。 そんなわけでPylearn2、Lasagne、nolearnなどのTheanoベースのラッパーライブラリをいろいろ調べていたのだが、結局のところKerasというライブラリが一番よさげだと思った。KerasはバックエンドとしてTheanoとTensorflowの両方が使え、より高レイヤな表現(たぶんChainerと同レベル)で深層学習のさまざまなアルゴリズムが記述できる。TheanoやTensorflowは完全に隠蔽されており、Kerasで書かれたプログラムはまったく修正せずにTheanoとTensor
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く