MLメタデータによる優れたMLエンジニアリング コレクションでコンテンツを整理 必要に応じて、コンテンツの保存と分類を行います。 ペンギンを分類するために本番MLパイプラインを設定するシナリオを想定します。パイプラインはトレーニングデータを取り込み、モデルをトレーニングして評価し、それを本番環境にプッシュします。 ただし、後でさまざまな種類のペンギンを含むより大きなデータセットでこのモデルを使用しようとすると、モデルが期待どおりに動作せず、種の分類が正しく開始されないことがわかります。 この時点で、あなたは知ることに興味があります: 利用可能なアーティファクトが本番環境のモデルのみである場合、モデルをデバッグするための最も効率的な方法は何ですか?モデルのトレーニングに使用されたトレーニングデータセットはどれですか?この誤ったモデルにつながったトレーニングの実行はどれですか?モデルの評価結果
THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be reviewed nor merged. Direct any PRs to keras.applications. Issues are not monitored either. This repository contains code for the following Keras models: VGG16 VGG19 ResNet50 Inception v3 CRNN for music tagging All architectures are compatible with both TensorFlow and Theano, and upon instantiation
README.md Show and Tell: A Neural Image Caption Generator A TensorFlow implementation of the image-to-text model described in the paper: "Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge." Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan. IEEE transactions on pattern analysis and machine intelligence (2016). Full text available at: http://arxiv.org/abs/1609
Only the new Caffe model format is supported. If you have an old model, use the upgrade_net_proto_text and upgrade_net_proto_binary tools that ship with Caffe to upgrade them first. Also make sure you're using a fairly recent version of Caffe. It appears that Caffe and TensorFlow cannot be concurrently invoked (CUDA conflicts - even with set_mode_cpu). This makes it a two-stage process: first extr
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く