※この投稿は米国時間 2021 年 7 月 21 日に、Google Cloud blog に投稿されたものの抄訳です。 密なベクトル空間でデータを表現する方法であるベクトル エンベディングは、ML エンジニアが使用するツールの中で最も便利なツールです。 エンベディングの初期の使用例としては、単語のエンベディングがあります。単語のエンベディングは、ベクトル空間での位置(距離と方向)により、各単語の有意義なセマンティクスを符号化することができるため、一般的なツールとなりました。たとえば、次のような実際のエンベディングを可視化した図では、国とその首都の関係性のように、セマンティックな関係性を表す幾何学的な関係を示しています。 今日、単語のエンベディングやテキストのエンベディングは一般的に、セマンティック検索システムを強化するために使用されています。エンベディングベースの検索は、単純なインデック