タグ

ブックマーク / www.ajimatics.com (4)

  • ラジアンへの変換を「π/180をかける」と覚えるのはやめなさい! - アジマティクス

    神様。この記事にうさんくさ自己啓発みたいなタイトルをつけることをお許しください。 数学のつまずきポイントは人それぞれいろいろあると思いますが、高校で出てくる「ラジアン」や「弧度法」とかいうやつが鬼門だったという人、少なくないのではないかと思います。 かいつまんで説明しましょう。我々は角度を表記するのに「度」という単位を使った「度数法」で表記することが多いですが、「度」の代わりに「ラジアン」という単位を使ったものが「弧度法」です。 例えば、度数法でいう「135°」は弧度法では「ラジアン」、「72°」は「ラジアン」となります。 それだけ聞くと、知らない人や忘れてる人からすればなにそれ、ってなるのは当然だと思います。 かくいう私も、いままで平然と「ナニナニ度」と呼んできたものがいきなり「うんちゃらパイ」などと呼ぶようになって、ラジアンを習った当時は面らったものです。 当時は根的な理解をして

    ラジアンへの変換を「π/180をかける」と覚えるのはやめなさい! - アジマティクス
    mohno
    mohno 2021/03/15
    んー、それでつまづく人は、他でもつまづきそうな予感。
  • 三角関数、何に使うの?→点を回すことができます(すごい) - アジマティクス

    数学的な内容を表現したアニメーションをいろいろ作って遊んでます。例えばこんなのとか。 素因数ビジュアライズ。大きく灰色で表示された数字の素因数が線を横切ります pic.twitter.com/z1MHJzPtbv — 鯵坂もっちょ🐟 (@motcho_tw) February 7, 2018 たくさんの点を、それぞれの点に書かれた数に応じた速度で回すことにより、大きく灰色で表示された数の素因数を表現しているわけです。楽しいですね。 こんなのもあります。 3Dで図示してみました。 pic.twitter.com/AF2R1QEtqk — 鯵坂もっちょ🐟 (@motcho_tw) April 12, 2017 九九におけるの段の「一の位」は、ぐるぐる回る点によって表現することができます。面白いですね。 変わったものでは、こういうのもあります。 惑星が「惑星」と呼ばれる理由ですhttps:/

    三角関数、何に使うの?→点を回すことができます(すごい) - アジマティクス
    mohno
    mohno 2019/01/11
    プログラミングに関係ない人はともかく、そうでなくても、けっこう点をまわせない人がいるんだよなあ。
  • "独創的すぎる証明"「ABC予想」をその主張だけでも理解する - アジマティクス

    2017年12月16日、数学界に激震が走りました。……というと少し語弊があるでしょうか。 この日、あの「フェルマーの最終定理」に匹敵するとも言われる数学の重要な予想、つまり未解決問題であった「ABC予想」が京都大数理解析研究所の望月新一氏によってついに解決されたというニュースが、数学界を、いや、世界中を駆け巡ったのです。 science.srad.jp とは言っても実は、ABC予想を証明したとする論文は2012年にすでに発表されていて、そこから5年間ずっと「査読中」、つまりその証明が正しいかどうかの検証中だったのです(5年もかかったというのは、それだけこの証明が独創的で難解だったことの証左でもあります)。 端から見ていた所感として、論文が出た当初は、当にこれがABC予想の証明になっているのか疑う向きも多かったようですが、最近では、証明はほぼ間違いないのだろう、というような雰囲気だったよう

    "独創的すぎる証明"「ABC予想」をその主張だけでも理解する - アジマティクス
    mohno
    mohno 2017/12/16
    すごく丁寧な説明:-) と、突如リンクされるせきゅーんさんのブログ:-D これ、予想を思いついた人も凄い気がするなあ。「証明に関しては厳しいので自力でお願いします」w
  • とりあえずだまされたと思って-((-1)^(1/7))を2乗してみてくれ - アジマティクス

    「アラブ世界では代数学が発展した」とはよく聞くけど、どうも自分の中でしっくりきていなかったというか、要するにあんな難しいものがどうやって始まり発展したのだろう? と気になっていたのですが、最近思うのです。代数学の始まりとは、「イコールの学問」だったのではないか? と。 つまり、「ある数を2乗して1引いたら元の数と同じになるような数はあるかな?」とか、「1引いてから2乗したら元の数の2倍になるような数があったら面白そうじゃない?」みたいな素朴な疑問から始まったのではないかと思うのです。なにかの操作をした数と別の操作をした数が「同じ」、すなわちイコールの学問ではないかと。 これは現代の言葉で言えば前者は「」、後者は「」のことになります。これはまさに方程式です。「代数学が発展した」「方程式の学問が発展した」っていきなり言われても実感がわかないけど、こういう素朴な疑問から始まったとしたら、最初期の

    とりあえずだまされたと思って-((-1)^(1/7))を2乗してみてくれ - アジマティクス
    mohno
    mohno 2016/06/07
    そりゃ「a^8=a」→「a^7=1」(a≠0として)が成立すればいいわけだから→https://www.wolframalpha.com/input/?i=a%5E7%3D1
  • 1