# # import # In[1]: import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # # load dataset # In[2]: mnist = input_data.read_data_sets("./data/mnist/", one_hot=True) # # build model # In[3]: def mlp(x, output_dim, reuse=False): w1 = tf.get_variable("w1", [x.get_shape()[1], 1024], initializer=tf.random_normal_initializer()) b1 = tf.get_variable("b1", [

