Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? この記事について Pythonでデータ分析を行う際に役立つセットアップを紹介します。 データ分析に興味がある方はこちらも合わせてどうぞ データサイエンティストに興味があるならまずこの辺りを見ておきな、って文献・動画のまとめ(随時追加) - Qiita 実行環境 Jupyter(旧iPython Notebook) http://jupyter.org/ インタラクティブ(対話的)なコード実行のための環境 データ分析に非常に適していて、慣れると他のIDEなどでは分析ができなくなる。 任意に分けたコードブロックごとに実行し、結果を都度表示出
PyData.Tokyoは「Python+Dataを通じて、世界のPyDataエクスパートと繋がれるコミュニティーを作る」ことを目的として設立され、これまでに勉強会3回およびチュートリアル1回が開催されました(過去のイベントのリスト)。4回目の勉強会となる今回は「データ解析アルゴリズムの高速化」をテーマに、株式会社ブレインパッドの佐藤貴海さん(@tkm2261)とシルバーエッグ・テクノロジー株式会社の加藤公一さん(@hamukazu)の2人に話していただきました。 登壇者のレベルの高い講演に加え、ヤフー、日本IBM、NTTデータ、AWS、Gunosy、Preferred Networksなど、第一線で活躍されている非常に質の高い聴講者にも参加いただき、大変充実した会になりました。 Pythonは書きやすい言語仕様と豊富なライブラリが特徴で、手軽に複雑なデータ分析を行えますが、他言語と同じ感
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? (追記 2017/5/10) だいぶ放置していた形になってしまい申し訳御座いません。 僕自身ここまでの反響が(炎上が?笑)起こったことに驚いております。 賛同してくださった方・批判してくださった方、どちらも最後まで記事を読んでいただき、コメントまでしていただいたことに感謝でいっぱいです! 自身の考え方としても勉強になりますし、何よりみなさんがこれだけ真剣になっていることが僕自身はとても嬉しい限りです。本当にありがとうございます。 前書き エンジニアとして1年経ち、振り返ってみると、業務中にわからないことがあるたびに調べ、 Qiita (
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く