タグ

LSHとCVに関するshirasyのブックマーク (4)

  • Hadoop Streaming で Locality-Sensitive Hashing を実装してみる | Atsushi TATSUMA Web Page

    はじめに 研究室では、大規模データベースを対象とした検索インデックスについて研究しています。 分散処理によるインデックス作成を考えていて、今回 Hadoop Streaming でどこまでできるかを試すべく、 Locality-Sensitive Hashing (LSH) を実装してみました。 実装したアルゴリズムについて LSH にはいくつかのアルゴリズムのバリエーションがあります。 LSH の詳細は、ブログなり論文なりなりありますので、ここでは省略しますが、 類似したデータに同じハッシュ値を与えることで、検索を高速化しようというアイディアです。 このハッシュ値には、0101 とかの短いバイナリ符号が好まれます。 今回は、いくつかある LSH のアルゴリズムのうち、 Charikar,M., Similarity estimation techniques from ro

  • lsh

    2. ( 最 ) 近傍点探索 ( Nearest Neighbor Search) とは いわゆる、特徴空間内での類似データ探索 二種類の問題が考えられる 定義 ℜ d 空間上の点集合 P が与えられた場合 最近傍点探索 クエリ点 q に対し、 p∈P で、 ||p-q|| を最小とする点 p を求める問題 r- 近傍点探索 クエリ点 q に対し、 p∈P で、 ||p-q||<r となる点 p を ( 存在するのならば ) 列挙する問題 3. 近傍点探索問題 近傍点探索アルゴリズムは、以下のようなタスクにおいて利用される インスタンスベース学習(k-近傍法) クラスタリング データセグメンテーション データベース検索 最短経路木探索(Minimum Spanning Tree) データ圧縮 類似データ検索 4. 近傍点探索アルゴリズム 最も単純なものは、クエリ点 q と、 p∈P の点全

    lsh
  • LSH (Locality Sensitive Hashing) を用いた類似インスタンスペアの抽出 - mixi engineer blog

    GW 中の長距離移動のために体調が優れない takahi-i です. 今回は巨大なデータをマイニングする一つの技術として LSH (Localtiy Sensitive Hashing) を紹介させていただきます. LSH とは LSH は大量なデータから類似度が高いインスタンスのペアを高速に抽出してくれるアルゴリズムです. ここでインスタンスはデータ集合の一つの要素を表します. たとえば扱うデータが E-コマースサイトの購買ログであれば, インスタンスは各ユーザですし, 画像データ集合であれば, インスタンスは個々の画像データです. LSH の詳しい解説については以下のサイトがあります. Wikipedia のエントリ LSH に関する論文がまとめられているページ 稿ではE-コマースサイトの購買履歴データを基に LSH の機能について述べてゆきます. 以下のような E-コマースサイトの

    LSH (Locality Sensitive Hashing) を用いた類似インスタンスペアの抽出 - mixi engineer blog
  • はてなグループの終了日を2020年1月31日(金)に決定しました - はてなの告知

    はてなグループの終了日を2020年1月31日(金)に決定しました 以下のエントリの通り、今年末を目処にはてなグループを終了予定である旨をお知らせしておりました。 2019年末を目処に、はてなグループの提供を終了する予定です - はてなグループ日記 このたび、正式に終了日を決定いたしましたので、以下の通りご確認ください。 終了日: 2020年1月31日(金) エクスポート希望申請期限:2020年1月31日(金) 終了日以降は、はてなグループの閲覧および投稿は行えません。日記のエクスポートが必要な方は以下の記事にしたがって手続きをしてください。 はてなグループに投稿された日記データのエクスポートについて - はてなグループ日記 ご利用のみなさまにはご迷惑をおかけいたしますが、どうぞよろしくお願いいたします。 2020-06-25 追記 はてなグループ日記のエクスポートデータは2020年2月28

    はてなグループの終了日を2020年1月31日(金)に決定しました - はてなの告知
  • 1