Philosophy We strive to create an environment conducive to many different types of research across many different time scales and levels of risk. Learn more about our Philosophy Learn more

↑ページ先頭 N-gramモデルを利用した事例 あるテキストから、任意のN-gram単位で共起頻度を集計し(N-gram統計を取る)、その結果を利用してテキストや言語の性格を見いだす研究によく利用される。 N-gramモデルで、ある文字列の直後に、特定の別な文字列は出現する確率を求める。 「an」の後には、必ず母音(aiueo)で始まる単語が結びつく確率が100% 「q」の後には、「u」が結びつく可能性が高い。 『論語』では「子」の後に「曰」が結びつく可能性が高い。 「百人一首」を平仮名に開いた場合の延べ数は、上位十五位までで全体の五割の使用量を占める(全部で六十八種の異なる平仮名(濁点含む)が使われている) 音声認識やOCR(原稿読みとりソフト)での利用 読みにくい文字でも、共起頻度の発生確率を考慮すれば、正しく原稿を可読出来る ↑ページ先頭 人文学的へのN-gramモデル導入 近藤みゆ
【最終更新 : 2017.12.17】 ※以前書いた記事がObsoleteになったため、2.xできちんと動くように書き直しました。 データ分析ガチ勉強アドベントカレンダー 17日目。 16日目に、1からニューラルネットを書きました。 それはそれでデータの流れだとか、活性化関数の働きだとか得るものは多かったのですが、Kerasと言うものを使ってみて、何て素晴らしいんだと感動してしまいました 今まで苦労して数十行書いていたものが、わずか3行で書ける! 正直、スクラッチで書く意味って、理解にはいいけど研究や分析には必要あんまないんですよね。車輪の再発明になるし。 と言うわけで、使えるものはどんどん使っていこうスタンスで、今日はKerasの紹介です! Tutorial+気になった引数を掘り下げて補足のような感じで書いています。 ちなみに、各部のコード以下をつなぎ合わせるとmnistの分類器が動くよ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く