タグ

数学に関するHeavylugのブックマーク (18)

  • Kohei Morita - 文学部生のための数学・物理学のブックリスト(Book List)

    This is a book list for non-STEM students. This list contains introductory textbooks of mathematics and physics, mostly written in Japanese. このリストは文系の人が数学や物理学を勉強するためのの案内です.あくまで,個人的に勉強になったものを並べているだけで,もちろん網羅的ではありません.やたらと並んでいることからわかるように,いろんなを読んでは挫折して,凹んだりしていました.優秀ならこんなにいっぱい挙げなくていいのだろうと思います.ここから下は,挫折と失敗の個人的な記録です. 何かコメントやアドバイスがある方は,こちらのブログのエントリ(http://hand4.blog2.fc2.com/blog-entry-43.html)にコメントをつけてく

  • 数学の勉強のやり方

    はじめにお前は誰やねん解析学を研究している博士課程の2年生。 この記事の目的もし大学1年生の自分に会えたら数学の勉強についてアドバイスしたいことがいくつかあるので、それを簡単にまとめたい。現在進行形で学部生をやっている人の参考になれば嬉しい。ただし、あくまで個人的な考えであり、視点が偏っているので、鵜呑みにはしない方が良い。 最初にやるべきことできる限り早い段階で集合と写像の言葉を覚えよう。微分積分や線形代数より先にこちらをやった方が良い。そもそも集合と写像の言葉は大学数学をやっていくうえで必要不可欠であり、微分積分や線形代数さえこれらの知識がなければ十分には理解できない。それから、定義に従って厳密に議論できるようにならなければ、そもそも大学数学のスタートラインにさえ立てない。集合と写像の勉強はその習得に適していると思う。 ちなみに、僕がこの「スタートライン」に立てたのは学部1年後期だった

    数学の勉強のやり方
  • 数学の問題で「速さの平均」と「平均の速さ」を間違えてしまうのはなぜ?

    私が算数・数学を教えるうえで大事にしていることの1つが、伝える内容を自分自身がしっかり理解しておくということだ。算数・数学の解き方は1つではなく、生徒たちが間違える理由もさまざま。自分自身が質をきちっと理解していないと、生徒からの質問や迷いにブレなく答え、彼らに理解してもらうことは不可能である。 たとえば、この問題を考えてほしい。「片道12kmのA町とB町の間を、行きは時速6km、帰りは時速4kmで歩いて往復したときの平均の速さを求めよ」。この問いに「4と6の平均だから時速5km」と答える生徒は少なくない。 これは大人でもありうる典型的な間違いで、我々大人は「なぜ間違いなのか」「考え方のどこがおかしいのか」を気づかせ、その質を理解させなければならない。 そこで私なら、「君たちが求めた数字は『速さの平均』であって、『平均の速さ』とは違うよ」と伝える。こう言われると「えっ、何なに?」と皆さ

    数学の問題で「速さの平均」と「平均の速さ」を間違えてしまうのはなぜ?
  • 数学が苦手な人が陥る「平均計算」の落とし穴

    コンテンツブロックが有効であることを検知しました。 このサイトを利用するには、コンテンツブロック機能(広告ブロック機能を持つ拡張機能等)を無効にしてページを再読み込みしてください。 ✕

    数学が苦手な人が陥る「平均計算」の落とし穴
  • 長岡亮介先生の数学|旺文社

    長岡亮介(ながおかりょうすけ)先生の著作物などに関する情報サイトです。「長岡先生の集中講義」、 「長岡の教科書」、「総合的研究」の追加情報を用意しています。また、動画などを通して、長岡先生の魅力を伝えていくつもりです。

  • 数学とプログラミングの勉強を開始して、何度も挫折して今に至る軌跡を晒す

    2013年の秋、その時の自分は30代前半だった。 衝動的に数学を学び直すことにした。 若くないし、数学を学びなおすには遅すぎると思って尻ごみしていたが、そこを一念発起。 というか軽い気持ちで。ぶっちゃけると分散分析とやらに興味を持ったから。 数学というか統計かな。 統計的に有意差があったといわれてもその意味がさっぱりだった。 一応、理系の大学を出てるので、有意差という単語をちょいちょい耳にはしていたが、 「よくわかんないけどt検定とかいうやつやっとけばいいんでしょ?」 くらいの理解だった。 で、ありがちな多重比較の例で、3群以上の比較にt検定は使っちゃダメだよっていう話を聞いて、なんか自分だけ置いてけぼりが悔しくなって、Amazonをポチッとしたのが全ての始まり。 あと、あの頃はライン作業の工員だったから、脳が疲れてなかったし。 そんなわけで、自分の軌跡を晒してみる。 みんな数学とかプログ

    数学とプログラミングの勉強を開始して、何度も挫折して今に至る軌跡を晒す
  • 数学・物理学の知識を理解するための「足りない知識」を「ツリー構造」で掘り下げていける学習サイト「コグニカル」レビュー

    分野が広く、さまざまな知識を求められる数学や物理学。これらの知識をツリー構造により分からないところまでひたすら掘り下げて、基礎の基礎から学ぶことができる学習サイトが「コグニカル」です。一体何かどう学べるのか?ということで、実際にコグニカルを使ってみました。 コグニカル https://cognicull.com/ja コグニカルのトップページはこんな感じ。「ばねの弾性力による位置エネルギー」「位置エネルギー」など、数学・自然科学・工学のさまざまな知識が353個並んでいます。 試しに「熱振動」をクリックすると、「熱振動とは、分子など、原子の集合で生じる原子の振動のことです。」と、熱振動について記述されたページが表示されました。また、分子と原子が振動している様子のイメージがアニメーションで表示されています。 読み進めていくと、「説明が理解できない場合」は「以下の知識が不足している可能性がありま

    数学・物理学の知識を理解するための「足りない知識」を「ツリー構造」で掘り下げていける学習サイト「コグニカル」レビュー
  • 「π>3.05を凄すぎる方法で証明」を整数論的に考える - tsujimotterのノートブック

    「」を示す問題が2003年の東大入試で出題されました。これは有名なのでみなさん良くご存じかと思いますが、一方で以下の動画のような解法はご存知でしょうか? www.youtube.com たいへん面白い解法なので、まずは一度ご覧いただきたいです。動画の解説もとても丁寧です。今回の記事はこの動画の内容を前提としてお話したいと思います。 動画の概要欄にもリンクが載っていますが、Yahoo知恵袋の以下の質問の「その他の回答」に載っていた回答が元ネタだそうです。 detail.chiebukuro.yahoo.co.jp 元ネタの人はどうやって発見したんでしょうね。いやー不思議です。 今回私が考えたいのは、いったいどうしてこんな解法が存在するのであろうかということです。登場するパラメータが絶妙なバランスで構成されていて、このような解法が存在すること自体が非自明です。 今回はその背景にある理屈を整数論

    「π>3.05を凄すぎる方法で証明」を整数論的に考える - tsujimotterのノートブック
  • YouTubeで「中学生から分かるAI数学講座」が無料公開 E資格に対応 | Ledge.ai

    Study-AI株式会社は3月23日から、特設サイトとYouTube公式アカウントにおいて、中学生でも人工知能AI)の勉強を目指せるとうたう「中学生から分かるAI数学講座」動画の無料配信を開始した。 講座は、一般社団法人日ディープラーニング協会(JDLA)が提供する「E資格」で出題される数式を読めるようになることを目的としており、中学校や高校の数学を予習(復習)するといった内容だ。 解説範囲は数式の読み方や計算方法で、数式の意味は解説に含まない。到達目標はΣやexpやlogなどの言葉が出てきても抵抗なく受け入れ、計算ができること。対象者はAIの勉強を進めたい人、高校数学を習っていない中学生。 制作意図としては、自分で勉強を進めたり講義を聞いたりするときに「教科書に出てくる数式が読めない」「見たこともない」ということがないように準備体操、予習の一助として作成したとしている。 気になる人

    YouTubeで「中学生から分かるAI数学講座」が無料公開 E資格に対応 | Ledge.ai
  • コグニカル

    コグニカルは、足りない知識を掘り下げて理解する学習サイトです。

  • 数学系YouTubeコンテンツ

    最近数学系の動画コンテンツについて調べてみたところ、意外にも既に多くのYouTuberが存在するということが判明した。我々もYouTubeのチャンネルは作ったところで、今後足りないジャンルのコンテンツは強化していきたいと考えているが、既に教育的な活動をなさっている方々のコンテンツを有効活用するのは先決だろう。全部調べきれたわけではないが、ここではシェアもかねて紹介したい。 ●龍孫江の数学日誌 in YouTube チャンネル https://www.youtube.com/channel/UCO34XpHxdG8P2n5aTPXSaZQ まずは、私が久々に数学を見るきっかけになった龍孫江さんのチャンネルである。主に群・環・体といった代数学について丁寧な解説がされており、「数学用語くらいはわかるが、実際の数学の証明や計算に慣れていない」人を対象にした内容だと思われる。一つ一つの動画は10~3

    数学系YouTubeコンテンツ
  • 積分とは・対数とは・微分とは〜「分かる」とはどういうことか〜

    文系向け「統計学」の授業で、積分・対数・微分を復習する機会があった。その時の「1枚スライド」を公開した。この図をめぐって、「分かる」とはどういうことか、について多くのコメントをいただいた。それを、まとめました。(話が同時並行で進行するので、スレッド風の「まとめ」です。) 注意:積分は、統計学の場合、正規分布表を見るために必要。対数の必要性は、尤度関数(尤もらしさ)の対数をとって計算を簡単にする式変形で使うため。微分の必要性は、確率密度関数の最大値(尤度最大の条件)を求めるため。どれも統計学で必須の内容。 注意2:(追記8/6)ここに出てくる「指数、対数、微分、積分」は「感染症の数理モデル」の基礎となっている。 注意3:(追記8月9日)番外編『「積分」と「源氏物語」〜「晩年の清少納言」から「京都女子大」まで』へのリンクはこちらです。https://togetter.com/li/157284

    積分とは・対数とは・微分とは〜「分かる」とはどういうことか〜
  • 中1の問題『(-1)×(-1)=1を示せ』を大学レベルの数学でオーバーキルするリプ欄が勉強になる

    @AonekoSS @marsh0604 (−1)×(−1) = (−1)^2 = (cosπ+i sinπ)^2 ※複素数平面に展開して = cos2π+i sin2π  ※ド・モアブルの定理で = 1 + i・0  ※ゼロの乗算は別途必要やも = 1 中学生向けじゃない…… 2020-07-05 10:47:34

    中1の問題『(-1)×(-1)=1を示せ』を大学レベルの数学でオーバーキルするリプ欄が勉強になる
  • 文系社会人が統計のために1から高校数学をやりなおしました|hanaori

    こういう人間です ・ 文系(英文学科) ・ Webエンジニア ・ 統計を勉強中モチベーションここ2年ほど統計を勉強しているのですが、そこで毎回立ちふさがるのが数学の壁でした。わたしは文系ということもあって数ⅡB(しかも途中まで)しか履修していなかったため、微分積分や線形代数などが出てくると理解することが難しく時間がかかってしまいます。 でももっと統計を知りたいし理解したい 😭 という気持ちをずっと感じていて今回数学をやり直すことにしました。 高校3年分と考えるとなかなか決心するのに時間がかかりましたが、やってよかったと思います。スケジュール感や実際使ったなどを共有することで同じような方の参考になればよいなあ、と思います。 実際使用した ・ 講座■ よくわかる数学シリーズ 主にMY BESTシリーズを使用しました。カラーで説明もわかりやすく、目にも心にもやさしい仕上がりになっております

    文系社会人が統計のために1から高校数学をやりなおしました|hanaori
  • 【数学】「検査で陽性だった人が実際に病気である確率は数%程度」とかいうやつ、何? - アジマティクス

    「精度99%の検査で陽性だった人が実際に病気である確率は数%程度」とかいう話、聞いたことがある人もいるかと思います。 「1000人に一人がかかる病気があり、あなたはこの病気かどうかを精度99%で判定できる検査を受けたところ、なんと陽性であった。あなたが実際にこの病気にかかっている確率はいくらか」というやつのことです。 「陽」という字にポジティブな響き※があるので、いい意味だったか悪い意味だったかちょっと迷ってしまうかもしれませんが、「陽性である」というのは「検査したら反応が出る」というくらいの意味です。※響きも何も、「ポジティブ」なんですけどね… ウイルス感染症のPCR検査のケースで言うならば、陽性であるとは「検体(採取した粘膜や痰などのこと)から基準を超えた量のウイルスの遺伝子が検出される」ということになるでしょうか。 で、あなたは陽性だったわけです。初めてこの話を聞いた人ならいやそりゃ

    【数学】「検査で陽性だった人が実際に病気である確率は数%程度」とかいうやつ、何? - アジマティクス
    Heavylug
    Heavylug 2020/05/07
    この説明でわからない人がいる、という方に驚きがあるというか、どこかでそういう議論があったの?観測範囲が狭くて・・・
  • 数学を勉強する時におすすめのツール|hanaori

    少し前に高校数学をやり直したのですが、徐々に勉強スタイルが整ってきたので使って便利だったツールをまとめておこうと思います。 今から勉強はじめようと思ってる方や、もうすでにはじめられてる方の参考になればうれしいです。 GeoGebra Graphing Calculator 数式を入力するとグラフを描いてくれます。 Webブラウザやスマホ・iPadのアプリでも使用でき、ぱっとグラフの形を確認したいときにとっても便利です。 Webブラウザや iPad などでも使用できます。 Wolfram Alpha図を描いてくれるところは GeoGebra に似ていますが、こちらは入力された数式などに対して構造化されたデータを用いて適切な結果を返してくれる検索エンジンのようです。 いろんなWebページをインデックスして検索結果を返す Google などとはまた違っておもしろいですね。 GeoGebra は非

    数学を勉強する時におすすめのツール|hanaori
  • 高校レベルの数学から大学の教養数学くらいまでを独学/学び直した - razokulover publog

    去年の12月頃から数学の学び直しを始めた。 職業柄少し専門的な、特に機械学習の方面の書籍などに手を出し始めると数式からは逃れられなかったりする。とはいえ元々自分は高校時代は文系で数学1A2Bまでしか履修していない。そのせいか少し数学へ苦手意識があり「図でわかるOO」とか「数学無しでもわかるOO」のような直感的に理解出来る解説に逃げることが多かった。実務上はそれで問題ないにしてもこのまま厳密な理解から逃げているのも良くないなと感じたのでもう少し先の数学に取り掛かることにした。 巷には数学の学び直しについての記事が既にたくさんある。それに自分の場合は何かの受験に成功した!とか難関の資格を取得した!というような華々しい結末を迎えている状態ではない。そんな中で自分が何か書いて誰の役にたつかもわからないが、少なくとも自分と似たようなバックグランドを持つ人には意味のある内容になるかもしれないので、どの

    高校レベルの数学から大学の教養数学くらいまでを独学/学び直した - razokulover publog
  • 実際のところ“インド式計算法”って便利なんです? 本場インド人が解説したら、爆速過ぎて会場がザワザワした話

    「難しい問題もあっという間に解けるようになる」といわれている、いわゆる“インド式計算法”。日ではあまり使われていませんが、どれほど便利なものなのでしょうか。 今回取り上げるのは、数学イベント「マスパーティ」内で行われた、インド出身のプサパティ シバラムさんによる“インド式計算法”の発表。日の学校で教わるものとは全く違う魔法のような解き方に、客席は何度もざわめいていました。 4:41:40ごろから 発表スライドをまとめて見る 記事は下記イベントでの発表「ウェーダ式数学」の書き起こしとなります イベント:2019年10月19、20日開催「マスパーティ」(Twitter:@mathparty2019) 発表者:プサパティ シバラムさん(Facebook:vedicmathsjapan) タイトルに「数学を学ぶ自然の道」と書いています。人生においても数学においても解決する道はたくさんあると思

    実際のところ“インド式計算法”って便利なんです? 本場インド人が解説したら、爆速過ぎて会場がザワザワした話
  • 1