エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
多層パーセプトロンでMNISTの手書き数字認識 - 人工知能に関する断創録
多層パーセプトロンで手書き数字認識(2014/2/1)の続き。今回は、簡易版のdigitsデータではなく、MNIST... 多層パーセプトロンで手書き数字認識(2014/2/1)の続き。今回は、簡易版のdigitsデータではなく、MNISTのより大規模な手書き数字データを使って学習してみます。 MNISTデータ MNISTは、28x28ピクセル、70000サンプルの数字の手書き画像データです。各ピクセルは0から255の値を取ります。まずは、digitsデータの時と同様にMNISTのデータを描画してどのようなデータなのか確認してみます。MNISTのデータは上記サイトからダウンロードしなくてもscikit-learnのfetch_mldata()関数でWebから取得できます。取得するのは初回実行時だけで二回目以降は第二引数のdata_homeに指定した場所に保存されます。 #coding: utf-8 import numpy as np import pylab from sklearn.datasets imp
2015/06/30 リンク