エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ディープラーニングフレームワークのncnnを試してみた - NTT Communications Engineers' Blog
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
ディープラーニングフレームワークのncnnを試してみた - NTT Communications Engineers' Blog
はじめに こんにちは。イノベーションセンターテクノロジー部門の齋藤と申します。普段はコンピュータビ... はじめに こんにちは。イノベーションセンターテクノロジー部門の齋藤と申します。普段はコンピュータビジョンの技術開発やAI/MLシステムの検証に取り組んでいます。今回は、モバイル向けの推論フレームワークのncnnに触れてみたので、その結果について書いて行きます。 ncnnとは ncnn1とは、モバイル向けの推論フレームワークでAndroidとiOSにどちらも対応しています。Pytorchの場合モデルは、pthの形式で1つのファイルで構成されています。ncnnの場合モデルは、param(モデル構造)とbin(重み)ファイルに分割されています。 自身のncnnを使用するモチベーションは、ncnnのデータフォーマットにあります。モバイルで使用するフレームワークにTensorFlow Lite2がありますが、他のフレームワークからモデルを変換するためにNCHW形式からNHWC形式に変換する必要があり