エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
シューア多項式 - Wikipedia
数学において、シューア多項式( - たこうしき、英語: Schur Polynomial)とは、自然数の分割でパラメトラ... 数学において、シューア多項式( - たこうしき、英語: Schur Polynomial)とは、自然数の分割でパラメトライズされたあるn変数対称多項式のことをいう。イサイ・シューアにちなんで名付けられたこの対称多項式は、基本対称多項式や完全対称多項式の一般化である。 表現論において、シューア多項式は、一般線型群の既約表現の指標である。シューア多項式は、すべての対称多項式からなる空間の基底となっている。2つのシューア多項式の積は、シューア多項式の非負整数係数一次結合に展開できる。この係数は、リトルウッド・リチャードソン則によって組合せ論的に記述される。さらに一般に2つの分割に対して定義される歪シューア多項式もシューア多項式と似た性質を持つことが知られている。 シューア多項式は自然数の分割に対応して定義される。 であって各 が非負整数となっているものを考える。このとき、次の交代式(すなわち変数