エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ポケモンで多変量分析・主成分分析を始めよう! RとTableauの連携 - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
ポケモンで多変量分析・主成分分析を始めよう! RとTableauの連携 - Qiita
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure y... Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 2015年の秋にPokemon Goが発表され、世界的に社会現象となったポケモンですが、今もなお、子供にも、大人にも絶大な人気があります。 ポケモンのキャラクターがユニークでバラエティに富んでいるということが、人気の理由なのではないでしょうか。 私も全くのポケモン初心者だったのですが、ポケモン・データから何か面白い分析はできないかと試行錯誤しています。 世界的データサイエンスのコンペサイト:Kaggleで公開されているデータセットの中にはポケモンに関するデータが結構あるようです。データサイエンティストにとってPokemonは興味深い研究

