エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
Pythonのlinearmodelsで操作変数法による因果推論を実施する - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Pythonのlinearmodelsで操作変数法による因果推論を実施する - Qiita
はじめに マーケティング施策が実際に効果があったか因果関係を推論したい場合は、介入を行うのが好まし... はじめに マーケティング施策が実際に効果があったか因果関係を推論したい場合は、介入を行うのが好ましいです。例えば、プッシュ通知を送るなど施策を実施する人達と実施しない人達に分けて、それぞれのグループの売り上げを比較することで、プッシュ通知というマーケティング施策に効果があるかを検証します。 しかし、プッシュ通知を送っても、スマホのバージョンが古いなどによって、プッシュ通知が届かない可能性があります。このようにマーケティング実施者の割り当てと、顧客に起こる事象が異なる場合があります。これを「不服従(ノンコンプライアンス)」と言います。 この不服従があると、プッシュ通知を送ったグループと送らなかったグループの売り上げを比較しても、施策の効果を検証できない可能性があります。スマホのバージョンが古くてプッシュ通知が届かない例の場合、スマホのバージョンが古い人は年収が低い可能性があります。 不服従が