エントリーの編集
                エントリーの編集は全ユーザーに共通の機能です。
                    必ずガイドラインを一読の上ご利用ください。
記事へのコメント0件
- 注目コメント
 - 新着コメント
 
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
          - バナー広告なし
 - ミュート機能あり
 - ダークモード搭載
 
関連記事
機械学習を向上させる合成データ
Original Blog : Synthetic Data for Better Machine Learning 翻訳: junichi.maruyama この1年で最も... Original Blog : Synthetic Data for Better Machine Learning 翻訳: junichi.maruyama この1年で最も話題になった、ChatGPTやDALL-Eのような生成AIの進化を試したことがある人も多いでしょう。これらのツールは、複雑なデータを消費し、より多くのデータを生成することで、驚くほど知的なもののように感じられるのです。これらやその他の新しいアイデア(diffusion models、generative adversarial networks、GAN)は、遊んでみると楽しく、恐ろしいとさえ感じます。 しかし、日常的な機械学習のタスクは、表形式のデータと「通常の」データサイエンス・ツールを使って、売上予測や顧客離れを予測することなどであり、ボッシュが火星の生物をどう描いたかを想像することではない。 ヒエロニムス・ボス風
              
            
