エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
dbtとデータパーティショニングで、大量データを扱う
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
dbtとデータパーティショニングで、大量データを扱う
dbt Advent Calendar 2022 の20日目の記事です。 背景 筆者は、dbtを使った広告プラットフォームのデー... dbt Advent Calendar 2022 の20日目の記事です。 背景 筆者は、dbtを使った広告プラットフォームのデータ基盤の構築・運用をしています。 この基盤は、最初からdbtを使っていたわけではなく、過去にフルスクラッチから、dbtへのリプレイスをしました。 広告レポーティング基盤に、dbtを導入したら別物になった話 そのdbtへのリプレイスで、当初困ったことがありました。世の中で紹介されているdbtのサンプルコードは、データ量が少ないもの(広告に比べると)を前提にしているので、大量データを扱っている筆者にとっては参考に出来るものがありませんでした。 けれども、元々フルスクラッチで実装していた時に、採用していたパーティショニングを使ったデータ処理のパターンが、dbtでの実装においても、非常に有効だったので、今回はそれについてシェアします。 今回、紹介する設計は、データウェアハ