エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
SparkとHadoop MapReduceの違い
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
SparkとHadoop MapReduceの違い
速度 MapReduceはHadoopクラスタのメモリを有効活用できていなかった。 SparkではRDD(Resilient Distri... 速度 MapReduceはHadoopクラスタのメモリを有効活用できていなかった。 SparkではRDD(Resilient Distributed Datasets)を使うことで、データをメモリに保存することができ、必要な場合にのみディスクへの保存を行うことができる。 これにより、SparkはHadoopよりも格段に高速である。 データ Hadoopはデータをディスクに保存するが、Sparkはメモリに保存する。 SparkはRDD(Resilient Distributed Datasets)とよばれるデータストレージモデルを用いる。RDDはnetwork IOを最小化するフォールトトレランスの機構を提供する。RDDの一部のデータが失われた場合、lineage(データに提供された処理の履歴)を元に再構築が行われる。このためフォールトトレランスのためのレプリケーションが不要となる。 これに