サイコロ投げの試行回数を限りなく増やすと、出た目の標本平均は平均に収束する。 大数の法則(たいすうのほうそく、英: Law of Large Numbers, LLN、仏: Loi des grands nombres[注釈 1])とは、確率論・統計学における基本定理の一つ。確率の公理により構成される確率空間の体系は、統計学的確率と矛盾しないことを保証する定理である。 たとえばサイコロを振り、出た目を記録することを考える。この試行回数を限りなく増やせば、出た目の標本平均が目の期待値である 3.5 の近傍から外れる確率はいくらでも小さくなる。これは大数の法則から導かれる帰結の典型例である。より一般に、大数の法則は「独立同分布に従う可積分系確率変数列の標本平均は平均に収束する」と述べられる。 厳密には、大数の法則は収束をどのようにとらえるかに応じて、ヤコブ・ベルヌーイによる大数の弱法則 (WL