Hattori です。以前書いた記事の冒頭 で、”今度はシリーズで何かエントリを書きたい ! ”と軽いノリで一文を表記しておいたら、ホントにやることになりました。 弊社のエンジニア組織の特徴のひとつに、手を上げる・声を上げると、『じゃ、やってよ。』というノリで返ってくるという事が挙げられるのですが、今回もその例に漏れなったわけですね・・・。シクシク・・・。 というわけで、何を書こうかなぁって話しなんですが・・・。私の場合アルゴリズム系の話しかできそうにないので、毎回ポツポツとマイナーで極一部の人にしかウケないテーマを紹介して行こうと思います。 で、初回の今回は SimilarityJoin 関連のアルゴリズムで "MPJoin" というやつを紹介したいと思います。 ■ Similarity Join とは何ぞや? まず最初に SimilarityJoin [1] の定義なんですが、ざっくり
OpenCVのサンプルとしても公開され、すっかり有名になった Haar-like特徴量と AdaBoost分類器を用いた顔認識手法だが、現在最先端の画像処理研究では、HoGという特徴量が注目されている。 HoGは、"Histogram of oriented Gradient"の略で、直訳すると、「方向づけられた勾配のヒストグラム」ということになる。つまり、入力画像の勾配(微分画像)を求め、それを局所領域ごとに勾配方向で区間分割してヒストグラムを取ったものを特徴量としようとする手法である。 これは2005年にNavneet DalalとBill Triggsによって提唱された新しい手法で、Haar-likeよりも分別能力が高そうだということで、盛んに研究されている。 私も今、HoGを使った物体認識処理を試作しているところであるが、データ空間として線形分離しやすいらしく、SVM(サポートベク
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く