機械学習をやっている人なら誰もが遭遇したであろうこの光景 (※写真はPyTorchのLanguage ModelのExampleより) Pythonのargparseでシェルから引数を受け取りPythonスクリプト内でパラメータに設定するパターンは、記述が長くなりがちな上、どのパラメータがmodel/preprocess/optimizerのものなのか区別がつきにくく見通しが悪いといった課題があります。 私は実験用のパラメータ類は全てYAMLに記述して管理しています。 YAMLで記述することでパラメータを階層立てて構造的に記述することができ、パラメータの見通しがぐっとよくなります。 preprocess: min_df: 3 max_df: 1 replace_pattern: \d+ model: hidden_size: 256 dropout: 0.1 optimizer: algo
この記事は NSSOL advent carendar 12/23担当分です。よろしくお願いします。 昨日は研修を運営してみて思ったことでした。 研修対応すると、その後も割と忙しくて、振り返りの時間がちゃんと取れなかったりします。 まとまった現場知見・感想が読めるのって、ありがたいなと思いました。 さて、今回のテーマは、「疑似データ生成」です。 背景:実データの取得は大変 擬似データが使えるかも データ分析やシステム開発のために、実データかそれに近いデータが欲しくなることは多々あります。 ただ、顧客情報や営業秘密といった機微な情報が含まれる場合は、データ取得までに高いハードルがあることが多いです。 結果、試してみたいアイディア/製品/分析手法などの適用ができないこともあるかと思います。 解決策の1つとして、擬似データの利用、が挙げられそうです。参考 実データを入力して、データの形式や統計量
このエントリについて 2種類の要件 性能要件のテスト offline と online offline 性能テストの自動化 A/B テストはすぐにほしい 機能要件のテスト 性能テストのみで十分なのでは? テストデータ生成 機能テストをいつ作るか まとめ このエントリについて ポエムです。 11/8(火) に開催された Cloudera World Tokyo 2016 に参加しました。 大規模データに対するデータサイエンスの進め方 #CWT2016 (以下、発表 1) データ分析グループの組織編制とその課題 マーケティングにおけるKPI設計の失敗例 ABテストの活用と、機械学習の導入 #CWT2016 (以下、発表 2) その中で上記の2つの発表がとてもいい話でした。 多少絡みのある内容として機械学習を利用するプロダクトのテストについて述べたいとちょっと前から考えていたので、いい機会なので
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く