※最新版(2021年バージョン)がこちらにありますので合わせてご覧ください! 毎年恒例, Python本と学び方の総まとめです!*1 プログラミング, エンジニアリングに機械学習と今年(2019年)もPythonにとって賑やかな一年となりました. 今年もたくさん出てきたPythonの書籍や事例などを元に, 初心者向けの書籍・学び方 仕事にする方(中級者)へのオススメ書籍 プロを目指す・もうプロな人でキャリアチェンジを考えている方へのオススメ を余す所無くご紹介します. 来年(2020年)に向けての準備の参考になれば幸いです. ※ちなみに過去に2019, 2018, 2017と3回ほどやってます*2. このエントリーの著者&免責事項 Shinichi Nakagawa(@shinyorke) 株式会社JX通信社 シニア・エンジニア, 主にデータ基盤・分析を担当. Python歴はおおよそ9年
あるいは、論文 "Best Practices for Scientific Computing" および "Good Enough Practices in Scientific Computing" について。 TL;DR 標題の件について、未だに答えは見えていないのだけど、自分の現状と他の人の例を文字で残しておく。 こういう話で「あーその手があったかー!」と知ったときの興奮はすごいので、みなさんもっとオープンにいきましょう。 大切なのは、ソフトウェア開発と同じ要領でデータサイエンスのプロジェクトを捉えて、分析と言う名の“開発”を行うつもりでディレクトリを掘ること。 必要なものリスト ナウいデータサイエンス/機械学習プロジェクトの中には(経験上、ぱっと思い浮かぶだけでも)次のようなファイル群があって、僕たちはそれらを良い感じに管理したい。 ソースコード 役割がいろいろある: 前処理(こ
Introduction This was in my first year of engineering degree. A hungry, home-food sick student (me) was treated (by a college senior) with a lavish buffet in one of the best five star hotels in Mumbai! You get served with so many dishes that you struggle to decide where to start, what to taste and what to eat! Why is this relevant here? Well, I had a similar feeling when I looked at the videos fro
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く