並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 470件

新着順 人気順

python for in list with indexの検索結果1 - 40 件 / 470件

  • 日本のウェブデザインの特異な事例

    sabrinas.spaceより。 8週間もかからなかったはずのプロジェクト 日本のウェブデザインはどう違うのか? 2013年のRandomwireのブログ投稿で、著者(David)は、日本のデザインの興味深い相違点を強調しました。日本人はミニマリストのライフスタイルで海外に知られていますが、ウェブサイトは奇妙なほどマキシマリストです。ページには様々な明るい色(3色デザイン原則を破っている)、小さな画像、そして多くのテキストが使われています。2022年11月に撮影されたこれらのスクリーンショットで、自分の目で確かめて下さい。 ブログ投稿には、文化的専門家、デザイナー仲間、そして不満を抱く市民によって支持されている、考えられる理由がいくつか挙げられていました。 この理論が今でも正しいのか、また、もっと定量的なアプローチが可能なのか気になったのでやってみました。 私が見つけたもの 各国の最も人

      日本のウェブデザインの特異な事例
    • Command Line Interface Guidelines

      Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

        Command Line Interface Guidelines
      • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

        いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

          日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
        • Bulk insertでも20時間以上かかっていたMySQLへのインサート処理を1時間以内にする - エムスリーテックブログ

          この記事はエムスリー Advent Calendar 2022の30日目の記事です。 前日は id:kijuky による チームメンバーのGoogleカレンダーの休暇予定一覧をスプレッドシート+GASで作った でした。 AI・機械学習チームの北川(@kitagry)です。 今回はMySQLへのインサートを20倍以上高速化した話について書きます。 仕事をちゃんとしてるか見張る猫 TL; DR はじめに 今回のテーブル バイナリログを無効化する 追試 LOAD DATA INFILE 追試 テーブルの正規化 インデックスを一時的に剥がす まとめ We are hiring!! TL; DR バイナリログをオフにする LOAD DATA INFILEを使う インデックスを一時的に消す はじめに AI・機械学習チームではサイトトップからアプリに至るまで多くの推薦システムがあります。 そこでは推薦ロ

            Bulk insertでも20時間以上かかっていたMySQLへのインサート処理を1時間以内にする - エムスリーテックブログ
          • Ubuntu 24.04 LTS サーバ構築手順書

            0 issue "letsencrypt.org" 0 issuewild "letsencrypt.org" 0 iodef "mailto:yourmail@example.jp" §OS再インストール 初期設定で期待通りの設定ができていない場合は、OSの再インストールをする。 さくらVPSのコントロールパネルから、OSを再インストールするサーバを選ぶ。 www99999ui.vs.sakura.ne.jp §OSのインストール操作 Ubuntu 24.04 LTS を選ぶ。 OSインストール時のパケットフィルタ(ポート制限)を無効にして、ファイアウォールは手動で設定することにする。 初期ユーザのパスワードに使える文字が制限されているので、ここでは簡単なパスワードにしておき、後ですぐに複雑なパスワードに変更する。 公開鍵認証できるように公開鍵を登録しておく。 §秘密鍵と公開鍵の作成 ク

              Ubuntu 24.04 LTS サーバ構築手順書
            • Model Context Protocol(MCP)とは?生成 AI の可能性を広げる新しい標準

              はじめに こんにちは。クラウドエースの荒木です。 ChatGPT や Claude などの生成 AI が日常生活やビジネスに浸透してきましたが、これらの AI の真価は外部システムと連携したときに発揮されます。しかし、この連携には大きな課題がありました。 これまで AI と外部システムを連携させるには、システムごとに個別の API 統合が必要で、認証方法やデータ形式、エラー処理など、細かな実装を繰り返す必要がありました。このような個別対応は開発効率を下げ、拡張性や保守性の面でも問題がありました。 そこで登場したのが「Model Context Protocol(MCP)」です。2024 年 11 月に Anthropic が発表したこのオープンプロトコルは、AI と外部システムの接続を標準化し、開発者の負担を大幅に軽減します。 この記事では、MCP の基本概念から実装方法、活用事例まで、技

                Model Context Protocol(MCP)とは?生成 AI の可能性を広げる新しい標準
              • Serena MCPはClaude Codeを救うのか?

                「Claude Codeがアホになる問題」が勃発している最中、SerenaというMCPサーバーが「Claude Codeのコンテキスト消費を削減し、応答を改善する」という評価でユーザーたちの間で注目されています。 筆者も実際にSerenaを使ってみたところ、確かにコンテキスト効率の改善(入出力トークンの減少を指します)を実感できました。詳しく調べてみると、このツールは非常にユニークな発想で設計されており、一過性の流行として消費されるには惜しいと感じました。 そこで、本記事では、この機能の背景にある技術的な仕組みを詳しく解説したいと思います。実際の検証も交えながら、Serenaのアーキテクチャとその効果を分析していきます。 現在のコーディングエージェントが抱える課題現在のコーディングエージェントの多くは、コードを単なるテキストファイルとして扱って逐次的な処理をしています。この根本的なアプロー

                  Serena MCPはClaude Codeを救うのか?
                • MCPサーバーが切り拓く!自社サービス運用の新次元 - エムスリーテックブログ

                  こんにちは、エムスリーエンジニアリンググループ、コンシューマチームの園田です。本記事では、外部サービスとAIエージェントの連携を可能にするMCPプロトコルについて、技術検証の実装例を交えてお話しします。 1. MCPとは(ざっくり) MCP(Model Context Protocol)とは、Anthropic社によって策定されたAIエージェントが外部サービスから情報を参照したり連携することを目的としたプロトコルです。 「MCPサーバー」は、GitHubやPostgreSQLといったリソースをMCPで喋れるように変換してあげるプロキシのようなサーバーです。 Claude DesktopやCursorなどはMCPクライアントの機能があり、GitHubなどのMCPサーバーを利用してナレッジとして利用したり、プルリクエストの作成なども行えます。 Introduction - Model Cont

                    MCPサーバーが切り拓く!自社サービス運用の新次元 - エムスリーテックブログ
                  • 【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口

                    サーバーレスアプリケーション開発ガイド Lambda関数を用いたサーバーレス開発をもっと知っておこうと思って読んだ本の感想です。2018年4月刊行、サーバーレスの主要サービス解説にコードはPython、のみならずフロントはVue.jsを使った本格開発まで、実践的な内容が詰まった本です。 作者は現Amazon Web Services Japan所属のKeisuke69こと西谷圭介さん。Twitterでもよくお見掛けします。(@Keisuke69) サーバーレスアプリケーション開発ガイド Chapter1 サーバーレスアプリケーションの概要 1-1 サーバーレスアプリケーションとは 1-2 ユースケースとアーキテクチャパターン 1-3 サーバーレスアプリケーションのライフサイクル管理 Chapter2 Amazon Web Services(AWS)利用の準備 Chapter3 インフラを自

                      【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口
                    • 日々のExcel管理を効率化するPythonスクリプトをChatGPTに作ってもらう - Taste of Tech Topics

                      最近は朝型にシフトしてウォーキングを始めました。菅野です。 皆さんは日々の業務でどれぐらいExcelを用いているでしょうか? 表計算ソフトであるExcelですが、計算のみならず、グラフ描画や、文章を表形式でまとめたり、マニアックな使い方ではアニメーションの作成までできてしまいます。 エンジニア以外の方も業務で使用することが多いのではないでしょうか? しかしながら、業務上でExcelを用いると、日々の煩雑な作業が多くなりやすい印象です。 エンジニアであればVBA等を調べてマクロを作るといったことも可能ですが、一般の人にはハードルが高くなってしまいがちです。 今回はそんなExcelを用いた業務をChatGPTにPythonスクリプトを作ってもらうことで効率化してみましょう。 今回のテーマではGPT-4のモデルを使用します。 また、CodeInterpreterで対象のExcelファイルを読み込

                        日々のExcel管理を効率化するPythonスクリプトをChatGPTに作ってもらう - Taste of Tech Topics
                      • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

                        FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

                          FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
                        • 再帰的な構造のデータの同値性判定はどうしたらいいか - 貳佰伍拾陸夜日記

                          数日前にTwitterで, JavaScriptのオブジェクトに対する===の挙動が初心者には難しいみたいな話を見かけた. 発端や周辺の議論をちゃんと追いかけてないからとくに出典は貼らない. たぶん元々の話は「へぇ, こういう挙動なんだ, 簡単ではないね」くらいの話だったのかもしれない. 自分のタイムラインの観測範囲では「そうだそうだ, (参照の同一性ではなく)同値性にしとけばいいのに」と思っている人もそれなりにいそうに見えた. 個人的にも同値性が簡単に確認できるとよい気はするものの, 「なんでそうしないんだ, オブジェクトの中身を確認していくだけだろ!」みたいな簡単な話ではないことも知っているため, 以下のようなツイートをしたのだった. JavaScriptのオブジェクトの同値性、再帰的な構造とか作るとぜんぜん自明じゃないんだよなぁ。リンクの構造は違うけどプロパティを辿ったときのパスはど

                            再帰的な構造のデータの同値性判定はどうしたらいいか - 貳佰伍拾陸夜日記
                          • Docker Compose と Amazon ECS を利用したソフトウェアデリバリの自動化 | Amazon Web Services

                            Amazon Web Services ブログ Docker Compose と Amazon ECS を利用したソフトウェアデリバリの自動化 この記事は Automated software delivery using Docker Compose and Amazon ECS を翻訳したものです。 2020 年 11 月、Docker Compose for Amazon ECS の一般提供を開始しました。開発者はコンテナ化されたマイクロサービスベースのアプリケーションをワークステーションから取り出し、AWS クラウドに直接デプロイすることがさらに簡単になりました。以前紹介したこのブログにあるように、開発者は docker compose up コマンドを実行して既存の Docker Compose ファイルをそのまま Amazon ECS にデプロイできます。Docker Comp

                              Docker Compose と Amazon ECS を利用したソフトウェアデリバリの自動化 | Amazon Web Services
                            • LangChainを使わない - ABEJA Tech Blog

                              TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                                LangChainを使わない - ABEJA Tech Blog
                              • みんなのためのLLMアプリケーション開発環境の構築事例

                                はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

                                  みんなのためのLLMアプリケーション開発環境の構築事例
                                • 「だんご屋のひまつぶし」完全解析 - すぎゃーんメモ

                                  「だんご屋のひまつぶし」とは 最長手順の問題は…? 組み合わせ、グラフ問題 プログラムで解く 状態の列挙 グラフの構築 最短経路問題を解く WASM化して、ブラウザ上で解く もしもすべて異なる団子だったら さらに一般化していくと 到達可能性 頂点数 本数を固定し、高さを変える 高さを固定し、本数を変える まとめ Repository 「だんご屋のひまつぶし」とは 「ハノイの塔」の派生型のようなパズル。 高さ3の串が3本あり、3色の団子2個ずつ計6個が刺さっている。これらを1個ずつ移し替えて、ある状態からある状態へと遷移させる、というゲーム。 移動できるのは各串で一番上にある団子だけ。 団子の大きさのような概念はなく、高さ3以内であればどこにでも動かせる。 単純なルールだがなかなかに奥が深く、じっくり考えて動かさないと最適な手順で達成するのは意外に難しい。 パズルオーディションというもので最

                                    「だんご屋のひまつぶし」完全解析 - すぎゃーんメモ
                                  • Why, after 6 years, I’m over GraphQL

                                    GraphQL is an incredible piece of technology that has captured a lot of mindshare since I first started slinging it in production in 2018. You won’t have to look far back on this (rather inactive) blog to see I have previously championed this technology. After building many a React SPA on top of a hodge podge of untyped JSON REST APIs, I found GraphQL a breath of fresh air. I was truly a GraphQL h

                                    • Content-Disposition の filename という地雷。 (1個の観点で17個の脆弱性を見つけた話) - ぶるーたるごぶりん

                                      English ver: https://gist.github.com/motoyasu-saburi/1b19ef18e96776fe90ba1b9f910fa714#file-lack_escape_content-disposition_filename-md TL;DR 1つのブラウザ、1つのプログラミング言語、15個の { Web Framework, HTTP Client ライブラリ, Email ライブラリ / Web Service 等} で脆弱性を見つけました。 見つけた脆弱性は、全て 1つの観点で発見した (多分 50-80 くらいのプロダクトの調査をした)。 RFC の記載では、(かなりわかりにくく)この問題に対する要件が記載されており、WHATWG > HTML Spec の方はしっかりと書かれているといった状況にある。 この問題は、 Content-Dispo

                                        Content-Disposition の filename という地雷。 (1個の観点で17個の脆弱性を見つけた話) - ぶるーたるごぶりん
                                      • 大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog

                                        1. はじめに 2024 年 5 月 14 日、OpenAI 社から新たな生成 AI「GPT-4o」が発表され、世界に大きな衝撃を与えました。これまでの GPT-4 よりも性能を向上させただけでなく1、音声や画像のリアルタイム処理も実現し、さらに応答速度が大幅に速くなりました。「ついにシンギュラリティが来てしまったか」「まるで SF の世界を生きているような感覚だ」という感想も見受けられました。 しかし、いくら生成 AI とはいえ、競技プログラミングの問題を解くのは非常に難しいです。なぜなら競技プログラミングでは、問題文を理解する能力、プログラムを実装する能力だけでなく、より速く答えを求められる解法 (アルゴリズム) を考える能力も要求されるからです。もし ChatGPT が競技プログラミングを出来るようになれば他のあらゆるタスクをこなせるだろう、と考える人もいます。 それでは、現代最強の

                                          大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog
                                        • AWS re:Invent 2020で発表された新サービス/アップデートまとめ - Qiita

                                          Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? AWS re:Invent 2020の会期中に発表された新サービス/アップデートのまとめです。 今年も、後から出来るだけ素早く簡単に振り返ることができるようにまとめました! 凡例 (無印) 新サービス (Update) 既存サービスのアップデート (APN) パートナー制度に関連したリリース/アップデート 12/1 (火) 今年の開幕は**「Amazon EC2 Mac instances」**でした。 Amazon EC2 Mac instances macOS用のAmazon Elastic Compute Cloud (EC2)

                                            AWS re:Invent 2020で発表された新サービス/アップデートまとめ - Qiita
                                          • Chromium にコントリビュートするための周辺知識 | blog.jxck.io

                                            Intro Chromium にコントリビュートするためには、ソースコードを理解する以外にも、もろもろ必要な周辺知識がある。 ドキュメントはかなり整備されている方ではあるが、そのドキュメントにたどり着くのが難しい場合もある。 レビュアーなどが親切に教えてくれるものをローカルにメモしているが、それも散らばってきたため、ここにまとめることにする。 まずは初期状態で公開するが、どんどん更新していき、長くなっても分割しないで追記を繰り返そうと考えている。 関連サイト 始めて取り組もうとすると、まずどこを見ればわからないところから始まる。 似たようないくつかのサイトがあり、使い分けがされているからだ。 code search https://source.chromium.org/chromium/chromium/src コードをインタラクティブに検索するためのサイト Workspace 風の U

                                              Chromium にコントリビュートするための周辺知識 | blog.jxck.io
                                            • これから流行る言語 | 雑記帳

                                              新言語にできることはまだあるかい なんとかWIMPS 最近(1ヶ月くらい前)、こんな記事が出ました: 新しいプログラミング言語が出てこない(新しく出てた言語を追記) – きしだのHatena Kotlin, TypeScript, Rust, Swift以降にみんなが話題にするような新しい言語が出てこない、それはなぜか、みたいな趣旨です。客観的に見れば「新しい言語は常に出続けている」わけですが、「みんなが話題にするような」というのが多分曲者なんでしょうね。 例え話をすると、新しい若木は常に生えてきているんだけど、大木に成長するには時間がかかるので、大木にしか興味のない人には「この8年間で新しい大木は登場していない」と判断してしまうのかもしれません。 まあ私としても、Web (HTTP) APIを書く言語とか、JSON色付け係が使う言語はもう出揃ってしまったのかもしれないという気はしなくもな

                                              • 私のチームで行っているドキュメント管理方法の紹介(GitHub Actions, S3, AsciiDoc) | DevelopersIO

                                                ドキュメントツールのインストール(Windows) Macの場合の設定方法は、本項の後に記載 PowerShellの起動 各種ツールをインストールするため、PowerShellを管理者として実行 Windowsボタンを押下 powershell と入力 右クリックで管理者として実行 を選択します Chocolateyのインストール 本手順は前述で起動したPowerShellを利用 1.Chocolatey のサイトにアクセスし、インストールコマンドをクリップボードへコピー 2.前項でコピーしたコマンドをPowerShellにペーストして実行します Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServiceP

                                                  私のチームで行っているドキュメント管理方法の紹介(GitHub Actions, S3, AsciiDoc) | DevelopersIO
                                                • Python製静的サイトジェネレーターSphinxでWebサイトを構築して公開 | gihyo.jp

                                                  鈴木たかのり(@takanory)です。今月の「Python Monthly Topics」では、Python製の静的サイトジェネレーターSphinxを使用してWebサイトを構築し、テーマを適用、外部へ公開する流れについて紹介します。後半ではSphinxの便利な拡張機能を紹介し、Webサイトをより便利にしていきます。 Markdownでドキュメントを書くだけで、きれいなWebサイトが簡単に公開できるので、ライブラリのドキュメントなどでもよく使われています。 Sphinxとは SphinxはPython製の静的サイトジェネレーターです。静的サイトジェネレーターとは、Markdown等の軽量マークアップのテキストファイルから、静的なWebサイトを生成するアプリケーションのことを言います。Python製の静的サイトジェネレーターにはSphinxを含め以下のツールなどがあります。 Sphinx:h

                                                    Python製静的サイトジェネレーターSphinxでWebサイトを構築して公開 | gihyo.jp
                                                  • 次世代のワークフロー管理ツールPrefectでMLワークフローを構築する CyberAgent Developers Blog | サイバーエージェント デベロッパーズブログ

                                                    ※ DynalystではAWSを全面的に採用しているため、AirflowもManaged版を調査しています。 導入後の状態 Prefect導入後は、以下の構成となりました。 ポイントは以下の点です。 ワークフローをDocker Image化することで、開発・本番環境の差を軽減 staging・productionはECS Taskとしてワークフローを実行、開発ではローカルPC上でコンテナ実行 ML基盤のGitHubレポジトリへのマージで、最新ワークフローが管理画面であるPrefect Cloudへデプロイ 従来のyamlベースのdigdagから、DSに馴染み深いPythonベースのPrefectに移行したことで、コード量が減り開発負荷が軽減しました。 Prefect 入門 ~ 基礎 ~ 注意: 本記事ではPrefect 1系を扱います。Prefect 2系が2022年7月にリリースされてい

                                                      次世代のワークフロー管理ツールPrefectでMLワークフローを構築する CyberAgent Developers Blog | サイバーエージェント デベロッパーズブログ
                                                    • Qwen3 の概要|npaka

                                                      以下の記事が面白かったので、簡単にまとめました。 ・Qwen3: Think Deeper, Act Faster 1. Qwen3本日 (2025年4月28日) 、「Qwen3」をリリースしました。「Qwen3-235B-A22B」は、「DeepSeek-R1」「o1」「o3-mini」「Grok-3」「Gemini-2.5-Pro」などの他のトップティアモデルと比較して、コーディング、数学、一般的な機能などのベンチマーク評価で競争力のある結果を達成しています。さらに、小型のMoEである「Qwen3-30B-A3B」は、10倍のアクティブパラメータを持つ「QwQ-32B」を凌駕し、「Qwen3-4B」のような小さなモデルでさえ、「Qwen2.5-72B-Instruct」の性能に匹敵します。 2つのMoEモデルをオープンウェイト化しています。「Qwen3-235B-A22B」は、総パラメ

                                                        Qwen3 の概要|npaka
                                                      • Introducing Amazon S3 Vectors: First cloud storage with native vector support at scale (preview) | Amazon Web Services

                                                        AWS News Blog Introducing Amazon S3 Vectors: First cloud storage with native vector support at scale (preview) Today, we’re announcing the preview of Amazon S3 Vectors, a purpose-built durable vector storage solution that can reduce the total cost of uploading, storing, and querying vectors by up to 90 percent. Amazon S3 Vectors is the first cloud object store with native support to store large ve

                                                          Introducing Amazon S3 Vectors: First cloud storage with native vector support at scale (preview) | Amazon Web Services
                                                        • REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js

                                                          By Jean-Marc Möckel I've created and consumed many API's over the past few years. During that time, I've come across good and bad practices and have experienced nasty situations when consuming and building API's. But there also have been great moments. There are helpful articles online which present many best practices, but many of them lack some practicality in my opinion. Knowing the theory with

                                                            REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js
                                                          • DuckDB でハイブリッド検索

                                                            DuckDB を利用してベクトル検索と日本語全文検索の両方を同時に利用できます。さらにこれらの結果をマージして Reranking を行うことでハイブリッド検索をサクサクっと実現する事が​できます。 Rerankerどうやらベクトル検索した結果と日本語全文検索した結果をマージして、クエリーとマージ結果を再度ランキング付けする仕組みのようです。 ここでは参考にした記事を共有する程度にしておきます。 日本語最高性能のRerankerをリリース / そもそも Reranker とは? - A Day in the Lifeリランキング モデルによる RAG の日本語検索精度の向上 - NVIDIA 技術ブログ今回は Reranker に hotchpotch/japanese-reranker-cross-encoder-large-v1 を利用しました。 以下は参考コードです。 [projec

                                                              DuckDB でハイブリッド検索
                                                            • プロと読み解くRuby 3.4 NEWS - STORES Product Blog

                                                              プロと読み解くRuby 3.4 NEWS テクノロジー部門技術基盤グループの笹田(ko1)と遠藤(mame)です。Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、恒例のクリスマスリリースとして、Ruby 3.4.0 がリリースされました(Ruby 3.4.0 リリース )。今年も STORES Product Blog にて Ruby 3.4 の NEWS.md ファイルの解説をします(ちなみに、STORES Advent Calendar 2024 の記事になります。他も読んでね)。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者

                                                                プロと読み解くRuby 3.4 NEWS - STORES Product Blog
                                                              • ぼくのMac環境 ver.のんピ | DevelopersIO

                                                                何年後かの自分へ こんにちは、のんピ(@non____97)です。 業務で使用する新しいMacが届きました。 新しいMacを初期セットアップするにあたって「今の設定どうだったっけ...」と調べる時間が結構かかってしまいました ということで何年後かの自分がまた新しいMacに乗り換える際に手間取らないように、設定した内容を書き記しておきます。 移行先のMacの情報は以下の通りです。M1 Max、嬉しい。 # OSのバージョンの確認 > sw_vers ProductName: macOS ProductVersion: 12.4 BuildVersion: 21F79 # カーネルのバージョン確認 > uname -r 21.5.0 # CPUのアーキテクチャの確認 > uname -m arm64 # CPUの詳細確認 > sysctl -a machdep.cpu machdep.cpu.

                                                                  ぼくのMac環境 ver.のんピ | DevelopersIO
                                                                • The Prompt Engineering Playbook for Programmers

                                                                  Developers are increasingly relying on AI coding assistants to accelerate our daily workflows. These tools can autocomplete functions, suggest bug fixes, and even generate entire modules or MVPs. Yet, as many of us have learned, the quality of the AI’s output depends largely on the quality of the prompt you provide. In other words, prompt engineering has become an essential skill. A poorly phrased

                                                                    The Prompt Engineering Playbook for Programmers
                                                                  • GitHub+CircleCIによる業務要件の記述精度向上の取り組み - ZOZO TECH BLOG

                                                                    こんにちは。MSP技術推進部の手塚(@tzone99)です。 この記事では、エンジニア向けのツールを周囲のエンジニア以外のチームにも導入し、チームを跨いだコミュニケーション上の課題を解決した事例をご紹介します。 普段エンジニアとしてプロダクトを開発する中でも、エンジニア同士のやり取りだけで業務が完結しないケースも多いかと思います。周囲のチームとやり取りする中でコミュニケーションのずれが発生した場合の対応として、今回の事例が参考になれば幸いです。 MSP技術推進部の活動について興味のある方はこちらの記事もぜひご覧ください。 techblog.zozo.com techblog.zozo.com techblog.zozo.com techblog.zozo.com 目次 目次 背景 コミュニケーション上の課題 業務要件のMarkdown/PlantUML化 運用の初期対応 自作のLinter

                                                                      GitHub+CircleCIによる業務要件の記述精度向上の取り組み - ZOZO TECH BLOG
                                                                    • ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ

                                                                      この記事はBASE Advent Calendar 2020の11日目の記事です。 devblog.thebase.in BASE株式会社 Data Strategy チームの@tawamuraです。 BASEではオーナーの皆様や購入者様のお問い合わせに対して、Customer Supportチームが主となって対応をしています。その中でもいくつかの技術的なお問い合わせに対しては、以下のようにSlackの専用チャンネルを通して開発エンジニアに質問を投げて回答を作成することになっています。 CSチームから調査を依頼されるお問い合わせの例 これらのCS問い合わせ対応は日々いくつも発生しており、CSお問い合わせ対応を当番制にして運用してみた話 でもあるように週ごとに持ち回り制で各部門のエンジニアが対応しているのですが、どうしても調査や対応に時間が取られてしまうという問題が発生していました。 dev

                                                                        ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ
                                                                      • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

                                                                        Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

                                                                          GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
                                                                        • neue cc - Claudia - Anthropic ClaudeのC# SDKと現代的なC#によるウェブAPIクライアントの作り方

                                                                          AI関連、競合は現れども、性能的にやはりOpenAI一強なのかなぁというところに現れたAnthropic Claude 3は、確かに明らかに性能がいい、GPT-4を凌駕している……!というわけで大いに気に入った(ついでに最近のOpenAIのムーブが気に入らない)ので、C#で使い倒していきたい!そこで、まずはSDKがないので非公式SDKを作りました。こないだまでプレビュー版を流していたのですが、今回v1.0.0として出します。ライブラリ名は、Claudeだから、Claudiaです!.NET全般で使えるのと、Unity(Runtime/Editor双方)でも動作確認をしているので、アイディア次第で色々活用できると思います。 GitHub - Cysharp/Claudia 今回のSDKを作るにあたっての設計指針の一番目は、公式のPython SDKやTypeScript SDKと限りなく似せる

                                                                          • Baby-AGIなるAI連動型の推論システムを評価してみた | IIJ Engineers Blog

                                                                            地方拠点の一つ、九州支社に所属しています。サーバ・ストレージを中心としたSI業務に携わってましたが、現在は技術探索・深堀業務を経て、ローカルLLMを中心としたAIソリューションを主軸に対応しています。 2018年に難病を患ったことにより、定期的に入退院を繰り返しつつ、2023年には男性更年期障害の発症をきっかけに、性的違和の治療に一歩足を踏み出しています。 名前がアツいよね。 BabyとはいえAGI(Artificial General Intelligence:汎用人工知能の略。男性の頭が薄くなるのはAGA。)。 実はこうした実行計画・調査・追加調査事項の抽出といったタスク管理を含めた総合的な動作をNLPモデルに行わせつつ、本来はn-CTXと呼ばれるインプットレイヤーのトークン数しか情報が入れられない環境下でも長期記憶を持たせて適切な回答をさせるようなものが増えました。今回、その中でも仕

                                                                              Baby-AGIなるAI連動型の推論システムを評価してみた | IIJ Engineers Blog
                                                                            • 生成AIを活用したシステム開発の現状と展望

                                                                              Copyright (c) The Japan Research Institute, Limited 生成AIを活用したシステム開発 の現状と展望 - 生成AI時代を見据えたシステム開発に向けて - 株式会社日本総合研究所 先端技術ラボ 2024年09月30日 <本資料に関するお問い合わせ> 伊藤蓮(ito.ren@jri.co.jp) 近藤浩史(kondo.hirofumi@jri.co.jp) 本資料は、作成日時点で弊社が一般に信頼できると思われる資料に基づいて作成されたものですが、情報の正確性・完全性を弊社で保証するもので はありません。また、本資料の情報の内容は、経済情勢等の変化により変更されることがありますので、ご了承ください。本資料の情報に起因して閲覧者 及び第三者に損害が発生した場合でも、執筆者、執筆取材先及び弊社は一切責任を負わないものとします。本資料の著作権は株式会社日

                                                                              • GiNZAと患者表現辞書を使って患者テキストの表記ゆれを吸収した意味構造検索を試した - エムスリーテックブログ

                                                                                エムスリーエンジニアリンググループ AI・機械学習チームの中村(@po3rin) です。 好きな言語はGo。仕事では主に検索周りを担当しています。 最近「医療言語処理」という本を読んで、医療用語の表記ゆれ吸収や意味構造検索などについて学びました。 医療言語処理 (自然言語処理シリーズ) 作者:荒牧 英治発売日: 2017/08/01メディア: 単行本 そこで今回はElasticsearchと患者表現辞書を使った意味構造検索がどのくらい実戦投入できるかを簡単に試したので、概要と実装方法を簡単にご紹介します。 患者テキストの表記ゆれ 患者テキストの表記ゆれとは MEDNLPの患者表現辞書 トークンによる検索の課題と対策の検討 主語が違うのにヒットしちゃう? 意味構造検索 係り受け解析と患者表現辞書を使った意味構造検索の実装 患者表現辞書を使った係り受け解析 患者表現辞書の表現をクエリに展開する

                                                                                  GiNZAと患者表現辞書を使って患者テキストの表記ゆれを吸収した意味構造検索を試した - エムスリーテックブログ
                                                                                • MCP Python SDK のドキュメント|npaka

                                                                                  以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

                                                                                    MCP Python SDK のドキュメント|npaka