並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 110件

新着順 人気順

python format float as intの検索結果1 - 40 件 / 110件

  • 浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記

    お近づきになりたい人向けシリーズです。 いろいろなトピックを詰め込みましたが、「これら全部を知らないといけない」のようなつもりではなく、いろいろなことを知るきっかけになったらいいなという気持ちなので、あまり身構えずにちょっとずつ読んでもらえたらうれしい気がします。 まえがき 予備知識 規格 用語 精度という語について 記法 表現について 有限値の表現について エンコードについて 丸めについて よくある誤差や勘違いの例 0.1 = 1 / 10? 0.1 + 0.2 = 0.3? 整数の誤差 Rump’s Example 基本的な誤差評価 用語に関して 実数の丸め 有理数の丸め 基本演算の丸め 差について 複数回の演算 補題たち 桁落ちについて Re: Rump’s example 融合積和 数学関数に関する式の計算 誤差の削減に関して 総和計算 数学関数の精度について 比較演算について 雑

      浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記
    • Amazon Connect + Whisper + GPT-4 Turboで、発話から個人情報(名前、住所、生年月日)を正しく認識できるか試してみた | DevelopersIO

      構成 構成としては、下記の通りです。 Connectのフローの詳細は下記の通りです。 例として、発話で住所を認識させる処理の流れは以下のとおりです。 コンタクトフロー内で「メディアストリーミングの開始」ブロックを使って、Kinesis Video Stream(KVS)への音声のストリーミングを開始します。 顧客は、住所を含めた発話をします。 「顧客の入力を保存する」ブロックで、顧客が特定の番号を押すと、ストリーミングを終了します。 「AWS Lambda関数を呼び出す」ブロックを使い、LambdaでKVSからデータを取得します。取得したデータをWAV形式に変換し、Whisper APIで文字起こしします。文字起こし内容から、GPT-4 Turboで住所のみを抽出します。 プロンプト再生で、住所のみを音声出力します。 以下の図は、電話での対話の流れを示しています。 前提 2023年11月時

        Amazon Connect + Whisper + GPT-4 Turboで、発話から個人情報(名前、住所、生年月日)を正しく認識できるか試してみた | DevelopersIO
      • 【コード付き】Pythonを使った偏微分方程式の数値解法【入門】 - LabCode

        偏微分方程式の数値解法とは偏微分方程式の数値解法は、偏微分方程式(PDE: Partial Differential Equations)の解を近似的に求めるための手法のことを指します。これらの方程式は、多くの場合、解析的な解が見つけられないため、数値的な手法が必要となります。以下に、主な数値解法をいくつか紹介します。 有限差分法(Finite Difference Method): 空間や時間を離散的なグリッドに分割し、微分を差分に置き換えることにより近似します。この方法は直感的で実装が比較的簡単ですが、グリッドの選択が解の精度に大きく影響します。有限要素法(Finite Element Method): 問題の領域を小さな「要素」に分割し、各要素内で方程式を近似します。この方法は複雑な形状や境界条件を持つ問題に適しています。有限体積法(Finite Volume Method): 保存

          【コード付き】Pythonを使った偏微分方程式の数値解法【入門】 - LabCode
        • BigQuery SQL でレイトレーシング - Qiita

          BigQuery (Standard SQL) でレイトレーシングをしてみました。 レイトレーシングとは レイトレーシングとは、光の輸送(屈折や反射)を物理シミュレーションして現実的なCG画像を作りだす技術です。 最近では RTX や PS5 など、リアルタイムレイトレーシングが台頭してきています。 レイ トレーシングとラスタライズの違い | NVIDIA レイトレーシングではピクセルごとにレイを飛ばして計算するため計算量が膨大になりがちですが、 ピクセルごとに独立に計算することができるので、処理の高速化が期待できます。 それなら BigQuery が得意分野じゃないか?と思い今回の挑戦をしてみました。 BigQuery とは 超高速でSQLを分散実行し数秒でペタバイト級データに対しても結果が返ってくるデータ分析向けサーバーレス・データウェアハウスです。詳細は以下をごらんください。 Big

            BigQuery SQL でレイトレーシング - Qiita
          • Ollama で structured outputs (構造化出力)を試す|ぬこぬこ

            tl;drJSON Schema で指定したフォーマットで出力を制御可能になったよ cURL / Python / JavaScript のそれぞれで試してみたよ 具体的な実用例があったのでそれも動かしてみたよ 使う上での tips や今後どんな機能が追加されるかまとめたよ 公開されたブログの流れに準拠しつつ、意図がズレない範囲で翻訳、解説、コードの実行をしていきます。チュートリアルになっているので、よかったら手を動かして試してみてください。 Ollama が structured outputs をサポート。JSON Schema で定義したフォーマットに LLM の出力を制御するすることが可能になりました。Ollama の Python と JavaScript のそれぞれのライブラリにおいてもサポートするよう更新。 ブログでは structured outputs のユースケースとし

              Ollama で structured outputs (構造化出力)を試す|ぬこぬこ
            • ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ

              この記事はBASE Advent Calendar 2020の11日目の記事です。 devblog.thebase.in BASE株式会社 Data Strategy チームの@tawamuraです。 BASEではオーナーの皆様や購入者様のお問い合わせに対して、Customer Supportチームが主となって対応をしています。その中でもいくつかの技術的なお問い合わせに対しては、以下のようにSlackの専用チャンネルを通して開発エンジニアに質問を投げて回答を作成することになっています。 CSチームから調査を依頼されるお問い合わせの例 これらのCS問い合わせ対応は日々いくつも発生しており、CSお問い合わせ対応を当番制にして運用してみた話 でもあるように週ごとに持ち回り制で各部門のエンジニアが対応しているのですが、どうしても調査や対応に時間が取られてしまうという問題が発生していました。 dev

                ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ
              • 線形計画法使ってあすけんで100点とってみた - asken テックブログ

                今回テックブログを書くにあたり、以下の記事を参考にしました。 qiita.com こちらの記事では、マクドナルドのメニューを対象に組み合わせ最適化問題を扱っており、内容も非常に面白く読ませて頂きました。 今回、弊社askenでも自社データを使用して食事の組み合わせ最適化問題をやってみたのでご紹介します。 はじめに こんにちは! askenで機械学習エンジニアとして働いているyumaです。 shoku_panという名前でTwitterをやってます。 さてみなさん、弊社ダイエットアプリ「あすけん」をご存知ですか? www.asken.jp あすけんでは、その日の食事内容を記録すると栄養士の未来(みき)さんからアドバイスをもらえます。点数も出るので、高得点をとることがモチベーションになっている方もいらっしゃると思います。 もちろん僕も使っています。ちなみに今年のお正月はこのような結果になりました

                  線形計画法使ってあすけんで100点とってみた - asken テックブログ
                • Python(PyTorch)で自作して理解するTransformer

                  1. はじめに Transformerは2017年に「Attention is all you need」という論文で発表され、自然言語処理界にブレイクスルーを巻き起こした深層学習モデルです。論文内では、英語→ドイツ語翻訳・英語→フランス語翻訳という二つの機械翻訳タスクによる性能評価が行われています。それまで最も高い精度を出すとされていたRNNベースの機械翻訳と比較して、 精度(Bleuスコア) 訓練にかかるコストの少なさ という両方の面で、Transformerはそれらの性能を上回りました。以降、Transformerをベースとした様々なモデルが提案されています。その例としては、BERT,XLNet,GPT-3といった近年のSoTAとされているモデルが挙げられます。 ここで、「Attention is all you need」内に掲載されているTransformerの構造の図を見てみま

                    Python(PyTorch)で自作して理解するTransformer
                  • MCP Python SDK のドキュメント|npaka

                    以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

                      MCP Python SDK のドキュメント|npaka
                    • GPT in 60 Lines of NumPy | Jay Mody

                      January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                      • BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita

                        このようなゲームを作りました。基本的には迷路のゲームです。 サイトのリンク 本記事ではこのゲームの製作過程を掲載すると共に、きっと有益にな情報をまとめます。楽しんで頂けたら幸いです。 Step0 前提 まず用語を整理します。 Blender : 3DCG制作ソフト。Pythonによって操作が可能になっています。 Python : 言わずと知れた有名プログラミング言語。 Unity : ゲーム制作ソフト。スタート画面の表示やゲームオーバーの判定などをしてくれます。言語はC#です。 大まかな流れとしては、 Step1. Blenderで3Dオブジェクトを作成 Step2. Pythonでそれを迷路に組み立てる Step3. Unityでゲームとして完成させる という風になっています。 コードに関しては、読みやすさも考え記事中においては一部抜粋に留めています。もし全体のコードを知りたい場合はプル

                          BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita
                        • ゼロからはじめるPython(128) Whisperでリアルタイム音声認識ツールを作ってみよう

                          オープンソースの音声認識モデルのWhisperを使うと、手軽に高品質な音声認識(文字起こし)が可能となる。今回は、Whisperを利用して簡単に使えるリアルタイム音声認識ツールを作ってみよう。 リアルタイム音声認識ツールを実行しているところ 音声認識モデルのWhisperとは 「Whisper」は、ChatGPTで有名なOpenAIが公開しているオープンソースの音声認識モデルだ。高精度な音声認識モデルで、英語だけでなく日本語を含めた多言語の音声をテキストに変換できる。ノイズの多い環境でも高い認識精度を誇り、議事録作成や字幕生成、自動文字起こしなどに活用されている。 Pythonから簡単に扱える点も魅力で、柔軟な応用が可能となっている。そこで、今回は、Pythonでリアルタイムの音声認識ツールを作ってみよう。 音声認識モデルのWhisperを公開しているWebサイト 音声認識に使うライブラリ

                            ゼロからはじめるPython(128) Whisperでリアルタイム音声認識ツールを作ってみよう
                          • SageMakerとStep Functionsを用いた機械学習パイプラインで構築した検閲システム(前編) - コネヒト開発者ブログ

                            皆さん,こんにちは!機械学習エンジニアの柏木(@asteriam)です. 今回はタイトルにもあるようにモデルの学習からデプロイまで一気通貫した機械学習パイプラインをSageMakerとStep Functionsで構築し,新しく検閲システムを開発したお話になります. こちらのエントリーで紹介されている機械学習を用いた検閲システムの技術的な内容になります. ※ 検閲システムの細かい要件や内容については本エントリーでは多くは触れないのでご了承下さい. tech.connehito.com はじめに 今回のエントリーは内容が盛り沢山になっているので,前編と後編の2つに分けて紹介することにします. 前編:SageMaker TrainingJobを用いたモデル学習を行い,SageMaker Experimentsに蓄積された実験結果をS3に保存するまでの話 前回紹介したテックブログ「SageMak

                              SageMakerとStep Functionsを用いた機械学習パイプラインで構築した検閲システム(前編) - コネヒト開発者ブログ
                            • Writing a C compiler in 500 lines of Python

                              A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog

                              • ノードエディタ形式の画像処理ツール「Image-Processing-Node-Editor」 - Qiita

                                はじめに 趣味でノードエディタ形式の画像処理ツール「Image-Processing-Node-Editor」を作りました。 その紹介の記事です。中身にOpenCVガッツリ使っているからアドカレOKですよね。。。👀? ガッツリ使っているという意味では、GUI部分の DearPyGui のほうがガッツリ使っているかもしれませんが🤔 「Image-Processing-Node-Editor」とは 以下のように、ノードを接続していくことで、処理結果を可視化しながら画像処理が行えるツールです。 以下のような特徴があります。 主要な処理は全てPython ※ライブラリ部分除く 各処理を可視化しながら画像処理が試せる 自作ノードの追加が容易 (だと信じている) 記事書くために見直していましたが、イマイチ複雑ですわ、、、😇 OSS (Apache 2.0ライセンス) デフォルトでいくつかのAI機

                                  ノードエディタ形式の画像処理ツール「Image-Processing-Node-Editor」 - Qiita
                                • dbt (data build tool) を使ってデータをテストする - CUBE SUGAR CONTAINER

                                  ソフトウェアエンジニアリングの世界では、自動化されたテストを使ってコードの振る舞いを検証するのが当たり前になっている。 同じように、データエンジニアリングの世界でも、自動化されたテストを使ってデータの振る舞いを検証するのが望ましい。 データをテストするのに使える OSS のフレームワークも、いくつか存在する。 今回は、その中でも dbt (data build tool) を使ってデータをテストする方法について見ていく。 dbt 自体はデータのテストを主目的としたツールではないものの、テストに関する機能も備えている。 また、dbt には WebUI を備えたマネージドサービスとしての dbt Cloud と、CLI で操作するスタンドアロン版の dbt Core がある。 今回扱うのは後者の dbt Core になる。 使った環境は次のとおり。 $ sw_vers ProductName:

                                    dbt (data build tool) を使ってデータをテストする - CUBE SUGAR CONTAINER
                                  • LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog

                                    はじめに こんにちは。Algomatic LLM STUDIO 機械学習エンジニアの宮脇(@catshun_)です。 Wang+’23 - A Survey on Large Language Model Based Autonomous Agents ChatGPT が発表されてからおよそ 1 年が経ち、AutoGPT, BabyAGI, HuggingGPT, Generative Agents, ChatDev, Mind2Web, Voyager, MetaGPT, Self-Recovery Prompting, OpenCodeInterpreter, AutoAgents などなど、大規模言語モデル (LLM) の抱負な知識および高度な推論能力を活用した LLM エージェント (AIエージェント) が発表されています。 直近ではコード生成からデバッグ、デプロイまで自律的に行う

                                      LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog
                                    • ゼロからはじめるPython(116) 金額合計ツールでExcel要らず - 合計/整形/コピーのツールを作ろう

                                      Excelは万能なので、商品金額をいくつか足し算したいだけでもExcelを起動することがあるだろう。しかし、業務でよく足し算するのなら専用ツールを作ってしまうと便利だ。本稿では、計算処理をしてメールに貼り付けするという一連の処理を自動化するツールを作ってみましょう。 専用の税込み金額計算ツール 汎用ツールと専用ツールを使い分けよう Excelのような汎用表計算ツールに習熟しておけば、あらゆる計算処理をExcelだけで処理できる。世界中のオフィスでExcelが活躍しているのは、その高い汎用性と豊富な機能によるところが大きいだろう。 これに対して、簡単な専用ツールを自作するならば、汎用ツールを工夫して使うよりも、何倍も効率が良く、素早くタスクを完成させることができる。専用ツールは、特定のタスクに特化させるため、操作性がよく画面もシンプルで使い勝手の良いものとなる。 それで、今回は、入力した商品

                                        ゼロからはじめるPython(116) 金額合計ツールでExcel要らず - 合計/整形/コピーのツールを作ろう
                                      • 缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる

                                        はじめに ——あるいは、「知っている」と「理解している」の間 Rustのことは、知っていた。学習もしていた。実務でも使っていた。 でも、それは知っているつもりだった。 知ってるつもり 無知の科学 (ハヤカワ文庫NF) 作者:スティーブン スローマン,フィリップ ファーンバック早川書房Amazon 日々Rustで開発し、BoxとRcとArcを使い分け、tokio::spawnでタスクを生成し、?演算子を当たり前のように書いている。FFI?PyO3使えばいいでしょ。WebAssembly?wasm-bindgenがあるじゃない。技術的には、確かに「使える」レベルにはあった。 でも、心のどこかで感じていた違和感があった。 オートバイのエンジンを分解できる人と、エンジンが動く原理を理解している人は違う。コードが動くことと、なぜそう書くべきかを理解することも違う。私は前者だった。メカニックではあった

                                          缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる
                                        • 生成AI と Wikipedia記事 で 子供向けお仕事提案bot を作ってみよう(Azure OpenAI + RAG) - ENGINEERING BLOG ドコモ開発者ブログ

                                          NTT コノキューに出向中の澤山です。 今年の7月にドコモから、コノキューにやってきました。 この記事は、NTTドコモ アドベントカレンダー2023 21日目の記事です。 この記事では、Wikipedia記事 と Azure OpenAI API、既存のモデルの3つを用い、RAG(Retrieval-Augmented Generation)のためのデータ作成と、RAGを活用した子ども向けお仕事提案botを作ります。 (記事の情報は2023/11月のものです。) ※プロンプトに関するTipsをまとめた記事はこちらです。 qompass.nttqonoq.com 生成AI / ChatGPT の大流行 子供のための、生成AI活用方法、ってある? 子供向けお仕事提案チャットボットを作ってみる 全体像 ステップ1 Wikipedia + Azure OpenAI service でお仕事情報をま

                                            生成AI と Wikipedia記事 で 子供向けお仕事提案bot を作ってみよう(Azure OpenAI + RAG) - ENGINEERING BLOG ドコモ開発者ブログ
                                          • H200 GPU x 8基で Qwen2.5-VL-72B-Instruct を使った OCR を試してみる - ABEJA Tech Blog

                                            ABEJAでデータサイエンティストをしている藤原です。 今回は、株式会社ハイレゾ様のGPUクラウドサービス「GPUSOROBAN」で H200 GPU × 8基構成のシングルノードサーバを用いて、大規模モデルを使用した検証を実施しました。本記事では、その検証でのGPUサーバの使用方法や、検証内容の一つである Qwen2.5-VL-72B-Instruct を用いたOCRの結果についてご紹介します。 highreso.jp はじめに GPUクラウドサービス「GPUSOROBAN」について GPUサーバの使い方の方針と事前準備 Qwen2.5-VL-72B-Instruct を使った OCR を試してみる 条件 実装 実行時のGPU使用状況と処理速度 検証1. 通常の文書のOCR 検証2. チャート・グラフのようなテキストで表現されていない情報のテキスト化 検証3. 複雑なレイアウトのドキュメ

                                              H200 GPU x 8基で Qwen2.5-VL-72B-Instruct を使った OCR を試してみる - ABEJA Tech Blog
                                            • SageMakerとStep Functionsを用いた機械学習パイプラインで構築した検閲システム(後編) - コネヒト開発者ブログ

                                              皆さん,こんにちは!機械学習エンジニアの柏木(@asteriam)です. 今回は前回のエントリーに続いてその後編になります. tech.connehito.com はじめに 後編は前編でも紹介した通り以下の内容になります. 後編:SageMakerのリソースを用いてモデルのデプロイ(サービングシステムの構築)をStep Functionsのフローに組み込んだ話 モデル学習後の一連の流れで,推論を行うためにモデルのデプロイやエンドポイントの作成をStep Functionsで実装した内容になります. 今回紹介するのは下図の青枠箇所の内容になります. 検閲システムのアーキテクチャー概略図 目次 はじめに Step Functionsを使ってサービングシステムを構築する方法 学習済みモデルを含んだ推論コンテナの設定(モデルの作成) エンドポイントの構成を設定 エンドポイントの作成とデプロイ 機械

                                                SageMakerとStep Functionsを用いた機械学習パイプラインで構築した検閲システム(後編) - コネヒト開発者ブログ
                                              • WSL2でunslothのGPROトレーニングを試してみる|noguchi-shoji

                                                「DeepSeek-R1 の推論を自分のローカル デバイスで再現できるように」「わずか7GBのVRAMでアハ体験を」とのことなので、UnslothのGRPO(Group Relative Policy Optimizatin)トレーニングを試してみます。 今回は Phi-4 (14B)で試してみます。 You can now reproduce DeepSeek-R1's reasoning on your own local device! Experience the "Aha" moment with just 7GB VRAM. Unsloth reduces GRPO training memory use by 80%. 15GB VRAM can transform Llama-3.1 (8B) & Phi-4 (14B) into reasoning models. Blo

                                                  WSL2でunslothのGPROトレーニングを試してみる|noguchi-shoji
                                                • AWS Lambdaにblenderを載せてサーバーレスなレンダリングサーバーを作る

                                                  初めまして、株式会社Berryの齋藤です。 みなさまLambdaはやっておりますでしょうか。 Berryでも3Dデータの自動処理を行う上で数多くのLambda関数を作成、運用しています。 その中で3Dデータのプレビュー生成が必要になったため、blenderによるプレビュー生成を行うことにしました。 通常であればEC2を使い、レンダリングサーバーを立てることが一般的かと思いますが、費用面・運用面を考慮し、Lambdaによるサーバーレスなレンダリングサーバーを作成することにしました。 非常にニッチなユースケースですが、ざっと検索したところ日本語の情報が少なかったので、今回はblenderをLambda上で動かす方法を紹介したいと思います。 サンプルリポジトリ 前提条件 AWS CLIとAWSアカウントが設定済み Dockerインストール済み (x64のCPUで検証しています。armの場合はダウ

                                                    AWS Lambdaにblenderを載せてサーバーレスなレンダリングサーバーを作る
                                                  • タッパーの自己言及式の謎を解く - プログラミングの備忘録

                                                    こんにちは。 今回は「タッパーの自己言及式 (Tupper's self-referential formula)」を取りあげようと思います。 (記事タイトルを AI が生成してくれるようになったので、さっそく使ってみました。) 例のごとく、少し前にこんなツイートを見かけました。 Tupper's self-referential formula is a formula that visually represents itself when graphed at a specific location in the (x, y) plane. pic.twitter.com/QVxB3fozpe— Fermat's Library (@fermatslibrary) 2022年10月14日 (Fermat's Library は理系的な雑学のツイートが多く、知見が広がるのでよく見ていま

                                                      タッパーの自己言及式の謎を解く - プログラミングの備忘録
                                                    • Modular: Mojo🔥 - It’s finally here!

                                                      Since our launch of the Mojo programming language on May 2nd, more than 120K+ developers have signed up to use the Mojo Playground and 19K+ developers actively discuss Mojo on Discord and GitHub. Today, we’re excited to announce the next big step in Mojo’s evolution: Mojo is now available for local download – beginning with Linux systems, and adding Mac and Windows in coming releases. While the Mo

                                                        Modular: Mojo🔥 - It’s finally here!
                                                      • Font with Built-In Syntax Highlighting

                                                        Note: I received a lot of great feedback from the discussions at Mastodon and Hacker News, so I've updated the post with some improvements to the font! I've also added some further examples and acknowledgements at the end. Syntax Highlighting in Hand-Coded Websites The problem I have been trying to identify practical reasons why hand-coding websites with HTML and CSS is so hard (by hand-coding, I

                                                        • Amazon ConnectとKinesis Video Streamsを利用した音声データの録音と保存(「留守番電話」や「AIチャットボット」で利用) | DevelopersIO

                                                          はじめに Amazon Connectでエージェントが介在しない「留守番電話」や「AIチャットボット」で録音したい場合、Kinesis Video Streams(以降、KVS)経由でAWS Lambdaを使い音声データの録音と保存する方法をまとめました。 Amazon Connectでは、下記のコンタクフローのブロックで録音できますが、録音条件は、顧客とエージェントが繋がってからのみ録音されます。 エージェントが介在しない、「留守番電話」やAmazon Lexと組み合わせた「AIチャットボット」の場合、録音機能は利用できません。 解決策として、コンタクフロー内で「メディアストリーミングの開始」というブロックを利用し、KVSにメディアデータを保存できます。ここで注意が必要なのは、保存されたメディアデータがMatroska(MKV)形式となるため、一般的な形式であるWAVなどの形式に変換する

                                                            Amazon ConnectとKinesis Video Streamsを利用した音声データの録音と保存(「留守番電話」や「AIチャットボット」で利用) | DevelopersIO
                                                          • Python でアプリ開発できる Flet を触ってみた | DevelopersIO

                                                            こんにちは、森田です。 最近周りの人から Python でアプリ開発のできる Flet について教えてもらい、面白そうなのでチュートリアルをやってみました。 よかったら参考にしてみてください。 Flet とは Flet は、フロントエンド開発の経験がなくても、簡単に Web、デスクトップ、モバイル アプリケーションを開発できるフレームワークです。 開発はPythonで行うことができ、内部的には、Flutter を利用しているようです。 標準でウィジェットが用意されているため、フロントの開発を行うことなく、少ない労力で、アプリとして動作させることができます。 Python で複雑すぎないアプリを作りたい場合にピッタリのフレームワークとなります。 やってみた 本記事では、チュートリアルに従って、電卓アプリを作ってみます。 なお、本記事では、Mac Python 3.8.13にて行います。 ライ

                                                              Python でアプリ開発できる Flet を触ってみた | DevelopersIO
                                                            • Why I use attrs instead of pydantic

                                                              This post is an account of why I prefer using the attrs library over Pydantic. I'm writing it since I am often asked this question and I want to have something concrete to link to. This is not meant to be an objective comparison of attrs and Pydantic; I'm not interested in comparing bullet points of features, nor can I be unbiased since I'm a major contributor to attrs (at time of writing, second

                                                              • python_modules.pdf

                                                                Python3 OpenCV / Pillow / pygame / Eel / PyDub / NumPy / matplotlib / SciPy / SymPy / gmpy2 / hashlib, passlib / Cython / Numba / ctypes / PyInstaller / curses / tqdm / JupyterLab / json / psutil / urllib / zenhan / jaconv Copyright © 2017-2025, Katsunori Nakamura 2025 8 19 Python ‘ .py’ Python Python Windows PSF Python py .py Enter macOS Linux PSF Python python3 .py Enter Anaconda Prompt Python p

                                                                • A simple search engine from scratch*

                                                                  *if you include word2vec. Chris and I spent a couple hours the other day creating a search engine for my blog from “scratch”. Mostly he walked me through it because I only vaguely knew what word2vec was before this experiment. The search engine we made is built on word embeddings. This refers to some function that takes a word and maps it onto N-dimensional space (in this case, N=300) where each d

                                                                  • はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場

                                                                    今回は Fusion-In-Decoder を使ってクイズに答えるモデルを作ります。以前から Wikipedia 等の外部情報を参照できるテキスト生成モデルを試してみたいと思っていました。Fusion-In-Decoder の発表は 2020 年なので少し前のモデルですが、T5 ベースで手軽に試せるサイズ感ですので、日本語で試してみましょう。 1. はじめに 今回紹介する Fusion-In-Decoder(以下、FiD )1 は Meta AI (当時は Facebook AI Research) が発表した Open Domain question Answering タスクを解くテキスト生成モデルです。 じつは、以前から外部情報を参照できるテキスト生成モデルを試してみたくて2、 Google の RETRO3 の論文を読んでたんです。 なのですが、外部情報のサイズ感が 1000 B

                                                                      はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場
                                                                    • 0.8.0 Release Notes ⚡ The Zig Programming Language

                                                                      Tier 4 Support § Support for these targets is entirely experimental. If this target is provided by LLVM, LLVM may have the target as an experimental target, which means that you need to use Zig-provided binaries for the target to be available, or build LLVM from source with special configure flags. zig targets will display the target if it is available. This target may be considered deprecated by

                                                                      • はじめての自然言語処理 spaCy 3.0 で Transformer を利用する | オブジェクトの広場

                                                                        今更ですが今年の2月に spaCy 3.0 が公開されました。 3.0 で導入された新機能の中で目玉と言えるのは、やはり Hugging Face Transformers (以下、単にTransformers) のサポートや PyTorch, Tensorflow との連携になるでしょう。今回はその辺りを実際に学習を動かしながら紹介したいと思います。 1. はじめに 今回は今年の2月に公開された spaCy 3.0 の話です。 spaCy は第4回でも紹介しましたが、研究者向けというよりは自然言語処理アプリ開発者向けのオープンソース自然言語処理ライブラリになります。日本語を含めた様々な言語の学習済みモデルが存在しており、 spaCy をインストールして、学習済みモデルをダウンロードするだけで、分かち書き、品詞や依存関係の推定、単語や文の類似度の判定など様々な機能を使用することができます。

                                                                          はじめての自然言語処理 spaCy 3.0 で Transformer を利用する | オブジェクトの広場
                                                                        • Zeplin + Prismを用いて、開発で利用する色の情報を簡単に生成・管理する

                                                                          LINE株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。 LINEヤフー Tech Blog はじめに こんにちは、LINE スタンプメーカーでiOSアプリの開発をしているfreddiです。 LINE スタンプメーカーでは、Zeplinというツールを使ってデザイナーからの成果物をチーム間で共有しており、開発時でもデザインを反映させるために利用しています。Zeplinでは、開発者向けのツールの作成も容易にでき、Zeplin上の情報を簡単に開発者の手元に落とし込むことができます。その例の一つとして、Gettという会社がOpen Sourceで公開しているPrismというツールがあります。Prismでは色情報をZeplinから取得して、好きなフォーマットに変換することができます。 私のチームでは、人為ミスやレビューコストを削

                                                                            Zeplin + Prismを用いて、開発で利用する色の情報を簡単に生成・管理する
                                                                          • ​Getting Started with Python

                                                                            Python is a powerful programming language that provides many packages that we can use. Using the versatile Python programming language, we can develop the following: AutomationDesktop applicationAndroidWebIoT home automationData Science and the list goes on.In this article, our primary focus will be knowing how to start learning Python and the essentials required to be a data scientist. Below is t

                                                                              ​Getting Started with Python
                                                                            • はじめての自然言語処理 Hugging Face Transformers で T5 を使ってみる | オブジェクトの広場

                                                                              前回が分量的にやたらと重かったので、今回はその反省(反動?)を踏まえて軽い感じでいってみます。第7回で紹介した T5 ですが Hugging Face の Transformers でもサポートされてますので、その使用方法をご紹介したいと思います。 1. はじめに 今回は久しぶりに T5 の話です。T5 に関しては第7回、第8回で一度紹介しているので、未読の方は記事に目を通してから戻ってきて頂けると、より理解がしやすいと思います。 さて、 T5 ですが Google のオリジナルコード(以下 “t5"と記述)1は敷居が高いと感じる方もいらっしゃるのではないでしょうか。 Estimator API ベースのコードや gin による設定など慣れていないと、とっつきにくいのではないかと思います。 そこで今回は Hugging Face の Transformers 2を使って T5 を動かす方法

                                                                                はじめての自然言語処理 Hugging Face Transformers で T5 を使ってみる | オブジェクトの広場
                                                                              • 0.10.0 Release Notes ⚡ The Zig Programming Language

                                                                                Tier 4 Support § Support for these targets is entirely experimental. If this target is provided by LLVM, LLVM may have the target as an experimental target, which means that you need to use Zig-provided binaries for the target to be available, or build LLVM from source with special configure flags. zig targets will display the target if it is available. This target may be considered deprecated by

                                                                                • PytorchのTransformersのT5を使って要約モデルを作る - 見習いデータサイエンティストの隠れ家

                                                                                  インターネットの世界にニュースが溢れる昨今、満足度が高いものを的確に読みたいという方も多いかと思います。そのためには、見るニュースをどれにするか判断することが必要になります。そこで、ニュース全体の主旨を短い文章で表す要約の価値が高まっています。 自然言語処理における要約は、大きく2つに分けられます。それは、抽出型と抽象型です。抽出型は、文章の中から重要な文を抜き出すことで要約を作ります。要約として選ばれた文は元の文章にあるものなので、方向性が大きく異ることや誤字脱字がうまれる可能性は低いです。しかし、要約として選ばれた文のそれぞれは関係があるわけではないので、流暢な要約にならないことも多いです。それに対して、抽象型は人間が作るように要約としての文章の流暢さを考慮しながら作ります。本来人間がほしい要約はこちらになりますが、抽出型に比べると難易度が上がり、全く意味がわからない文章になる可能性も

                                                                                    PytorchのTransformersのT5を使って要約モデルを作る - 見習いデータサイエンティストの隠れ家