並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 595件

新着順 人気順

python format functionの検索結果1 - 40 件 / 595件

  • Command Line Interface Guidelines

    Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

      Command Line Interface Guidelines
    • AWSでサーバーレス設計を考える時の手引き書 - Qiita

      Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに サーバーレスに触れて数年が立ちました。 そろそろ人にある程度説明ができるレベルの知識と経験が備わったような気もするので、年末なのでまとめてみました。 サーバーレス気になっているけれども、という人に少しでもためになればいいなーと思います。 サーバーレス基礎 皆さん、サーバーレス設計という話を聞いたことはあるでしょうか? まずサーバーレスについて説明しますが、世の中にはたくさん解説記事があるのでそちらも適宜参照ください。 サーバーレスでも実際にはサーバーは存在する サーバーレスとは開発者がサーバーのことを意識しなくてもよい、という

        AWSでサーバーレス設計を考える時の手引き書 - Qiita
      • PDFを高品質なマークダウンに変換する方法|すぅ | AI駆動PM

        PDFファイルをマークダウンに変換する作業って、地味だけど本当に大切な作業ですよね。 「また手作業でコピペか...」 「レイアウトが崩れてる...」 「表がめちゃくちゃになってる...」 私もさまざまな文書管理の現場で同じような課題に直面してきました。特に、既存のPDF資料をObisidianやNotionなどのマークダウン形式で管理したい場面って、本当に多いですよね。 手作業でやると、一つの文書だけで数時間かかることもあります。表や画像の配置を調整して、リンクを張り直して、フォーマットを整えて...。骨が折れる作業です。 「もっと効率的な方法はないだろうか?」 そう思っていた矢先、いくつかの優秀な手法を発見しました。今回は、スキルレベル別に4つのアプローチをご紹介したいと思います。 【各レベルの概要】まず、それぞれのアプローチの特徴を簡単にご紹介しておきますね。 レベル1:GPT-5でシ

          PDFを高品質なマークダウンに変換する方法|すぅ | AI駆動PM
        • Ubuntu 24.04 LTS サーバ構築手順書

          0 issue "letsencrypt.org" 0 issuewild "letsencrypt.org" 0 iodef "mailto:yourmail@example.jp" §OS再インストール 初期設定で期待通りの設定ができていない場合は、OSの再インストールをする。 さくらVPSのコントロールパネルから、OSを再インストールするサーバを選ぶ。 www99999ui.vs.sakura.ne.jp §OSのインストール操作 Ubuntu 24.04 LTS を選ぶ。 OSインストール時のパケットフィルタ(ポート制限)を無効にして、ファイアウォールは手動で設定することにする。 初期ユーザのパスワードに使える文字が制限されているので、ここでは簡単なパスワードにしておき、後ですぐに複雑なパスワードに変更する。 公開鍵認証できるように公開鍵を登録しておく。 §秘密鍵と公開鍵の作成 ク

            Ubuntu 24.04 LTS サーバ構築手順書
          • OpenAI API の ファインチューニングガイド|npaka

            1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

              OpenAI API の ファインチューニングガイド|npaka
            • Serena MCPはClaude Codeを救うのか?

              「Claude Codeがアホになる問題」が勃発している最中、SerenaというMCPサーバーが「Claude Codeのコンテキスト消費を削減し、応答を改善する」という評価でユーザーたちの間で注目されています。 筆者も実際にSerenaを使ってみたところ、確かにコンテキスト効率の改善(入出力トークンの減少を指します)を実感できました。詳しく調べてみると、このツールは非常にユニークな発想で設計されており、一過性の流行として消費されるには惜しいと感じました。 そこで、本記事では、この機能の背景にある技術的な仕組みを詳しく解説したいと思います。実際の検証も交えながら、Serenaのアーキテクチャとその効果を分析していきます。 現在のコーディングエージェントが抱える課題現在のコーディングエージェントの多くは、コードを単なるテキストファイルとして扱って逐次的な処理をしています。この根本的なアプロー

                Serena MCPはClaude Codeを救うのか?
              • 初心者がプログラミングを学ぶときに最も効果的な方法は「写経」だと思う|shi3z

                プログラミングの勉強方法で最も効果がない方法は「写経」です。コードを記憶しても無駄です。実際のプログラミングでは記憶にないコードを作り出さなければいけないからです 「写経」はタイピング速度の向上やキーワードを覚える効果はあるかもしれませんが、肝心のプログラミングには役に立ちません — Koichi Nakashima (@ko1nksm) September 3, 2024 こういうエントリを見かけたので。 僕は1990年代からプログラミングを人に教える仕事をしています。最初は中学の時に技術家庭科の授業を先生から任されて同級生にプログラミングを教えることから始まりました。その後、色々な方法を試しましたが、結論としてプログラミング初心者は写経した方が結局は上達が速いと今は考えています。 それが特に強く感じられたのは2015年頃から色々な人にAI関連のプログラミングを教え始めた頃です。 AI関

                  初心者がプログラミングを学ぶときに最も効果的な方法は「写経」だと思う|shi3z
                • 可愛すぎかよ! ハッカーの新しい相棒 コマンドラインからLLMを使えるgptme|shi3z

                  こういうのが欲しかったんだよ。マジで。 コマンドラインからLLMを呼び出せるgptmeというツールがアツい これは、gptmeコマンドを追加するというもの。 環境変数としてOPENAI_API_KEYとかAnthropicのキーとかを設定しておくと勝手にAPIを呼び出してくれる。もちろん、クラウドに送信するとかけしからんという勢にはローカルLLMでも対応できる。 こいつはコマンドライン版ChatGPTのようなものなので、コマンドラインで動くのだが、その真価は例えばパイプで繋いだ時とかに発揮される。 $ du -d 1|gptme "一番容量を食ってるフォル ダは何Gバイト使ってんの?" Found OpenAI API key, using OpenAI provider [10:13:32] No model specified, using recommended model for

                    可愛すぎかよ! ハッカーの新しい相棒 コマンドラインからLLMを使えるgptme|shi3z
                  • 浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記

                    お近づきになりたい人向けシリーズです。 いろいろなトピックを詰め込みましたが、「これら全部を知らないといけない」のようなつもりではなく、いろいろなことを知るきっかけになったらいいなという気持ちなので、あまり身構えずにちょっとずつ読んでもらえたらうれしい気がします。 まえがき 予備知識 規格 用語 精度という語について 記法 表現について 有限値の表現について エンコードについて 丸めについて よくある誤差や勘違いの例 0.1 = 1 / 10? 0.1 + 0.2 = 0.3? 整数の誤差 Rump’s Example 基本的な誤差評価 用語に関して 実数の丸め 有理数の丸め 基本演算の丸め 差について 複数回の演算 補題たち 桁落ちについて Re: Rump’s example 融合積和 数学関数に関する式の計算 誤差の削減に関して 総和計算 数学関数の精度について 比較演算について 雑

                      浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記
                    • OpenAI DevDay で発表された新モデルと新開発ツール まとめ|npaka

                      以下の記事が面白かったので、かるくまとめました。 ・New models and developer products announced at DevDay 1. GPT-4 Turbo「GPT-4 Turbo」は、「GPT-4」より高性能です。2023年4月までの知識と128kのコンテキストウィンドウを持ちます。さらに、「GPT-4」と比較して入力は1/3、出力は1/2の安い価格で提供します。 開発者はモデルID「gpt-4-1106-preview」で試すことができます。今後数週間以内に、安定した実稼働モデルをリリースする予定です。 1-1. Function Calling の更新「Function Calling」に、単一メッセージから複数のFunction (「車の窓を開けてエアコンをオフにする」など) を呼び出す機能などが追加されました。精度も向上しています。 1-2. 構造

                        OpenAI DevDay で発表された新モデルと新開発ツール まとめ|npaka
                      • サーバーレスのセキュリティリスク - AWS Lambdaにおける脆弱性攻撃と対策 - GMO Flatt Security Blog

                        はじめに こんにちは、株式会社Flatt Security セキュリティエンジニアの森岡(@scgajge12)です。 本稿では、AWS Lambda で起こりうる脆弱性攻撃やリスク、セキュリティ対策を解説し、サーバーレスにおけるセキュリティリスクについて紹介します。 はじめに AWS Lambda について サーバーレスにおけるセキュリティリスク AWS Lambda で起こりうる脆弱性攻撃 Lambda での脆弱性攻撃によるリスク 脆弱性攻撃による更なるリスク OS Command Injection XML External Entity (XXE) Insecure Deserialization Server Side Request Forgery (SSRF) Remote Code Execution (RCE) AWS Lambda におけるセキュリティ対策 セキュリティ

                          サーバーレスのセキュリティリスク - AWS Lambdaにおける脆弱性攻撃と対策 - GMO Flatt Security Blog
                        • 技術blogのリンクを投げたらChatGPTが要約して、いい感じに整形してチャンネル投稿してくれるbotを社内Slackに生やしたら捗った話

                          こんにちは、株式会社シグマアイのエンジニアの@k_muroです。 今回の記事は最近導入した「技術blogを良い感じに共有してくれるSlack bot」のご紹介を。 はじめに 技術の進化は止まらない。(真面目な話、AI系の進捗がマジですごいて全然追えない) 毎日のように新しい技術、フレームワーク、ライブラリ、ツールが生まれています。そんな中でエンジニアとして働いていると、この情報の波に疲れを感じること、ありませんか? ありますよね?(脅迫) 実際私もその一人で、この小さな疲れが積み重なって大きなストレスとなることに気づきました。 「新しい技術情報、追いつけるかな?」 「あのブログ記事、後で読もうと思ってたのに、どこいったっけ?」 「チーム全員が同じ情報を持ってるか心配だな。」 そんな日常の疑問や不安から逃れるための一歩として、私はあるSlack botを開発しました。このbotは、送られた技

                            技術blogのリンクを投げたらChatGPTが要約して、いい感じに整形してチャンネル投稿してくれるbotを社内Slackに生やしたら捗った話
                          • OpenAI API ドキュメント 日本語訳|#1 GET STARTED 前編|ゑぐみかるちゃあ

                            OpenAI API ドキュメントの日本語訳をこちらでまとめます。文字量の多いドキュメントなので、セクションごとに記事を分割しています。 今回は「GET STARTED 」のセクションからIntroduction と Quickstart を抜粋した前編です。 基本 DeepLで翻訳して、気になるところだけ書き換えています(ほぼ気になるところがないのが、DeepLのすごいところ)。原文との突き合わせができるようにはじめに原文を入れてますので、間違いなど見つけられましたら、ぜひご指摘ください。ご指摘箇所は随時反映させていただきます。 原文のリンクが有効になってますので、それぞれ必要な場合は原文リンクの方を参照ください。 Introduction|はじめに Overview|概要The OpenAI API can be applied to virtually any task that i

                              OpenAI API ドキュメント 日本語訳|#1 GET STARTED 前編|ゑぐみかるちゃあ
                            • 敵対的プロンプト技術まとめ - Qiita

                              こんにちは@fuyu_quantです。 この記事はLLM Advent Calender 2023 17日目の記事です。 よかったらプライベートで作成したData Science wikiのGPTsも見て下さい! はじめに 今回は敵対的なプロンプト技術についてまとめました.まとめ方は主に,Ignore This Title and HackAPrompt: Exposing Systemic Vulnerabilities of LLMs through a Global Scale Prompt Hacking Competition というLLMに対する敵対的なプロンプト技術に関してまとめた論文を参考にしています.本記事の内容が世の中のLLMを使ったサービスの機能向上の役に立てれば幸いです. ※世の中のLLMサービスが敵対的なプロンプト手法に対応できるように公開をしたものであり,利用を

                                敵対的プロンプト技術まとめ - Qiita
                              • The End of Programming as We Know It

                                Join the O'Reilly online learning platform. Get a free trial today and find answers on the fly, or master something new and useful. Learn more Betty Jean Jennings and Frances Bilas (right) program the ENIAC in 1946. Via the Computer History Museum Eventually, interpreted languages, which are much easier to debug, became the norm. BASIC, one of the first of these to hit the big time, was at first s

                                  The End of Programming as We Know It
                                • Cline+ローカル版DeepSeek R1でAIコーディングを使い放題にする(高スペックマシン向け)|しぴちゃん

                                  しぴぴぴ! Vtuberのしぴちゃん (https://www.youtube.com/@CP-chan) です。 配信ではゲームの話しかしてませんが、今回はAIに関する連載ということでローカル環境(手元のマシン)で動かせるAIの話をしていきます。 第一弾 DeepSeek R1をほぼ準備なしからローカルGPUで動かす 第二弾 本記事 Cline+ローカル版DeepSeek R1でAIコーディングを使い放題にする(高スペックマシン向け) 第三弾 GPUなしでも動く!ローカルLLMとllama.vscodeでコード補完 今回は連載の第二弾です。 LLMをローカルにインストールする大きなメリットとして、API制限や従量課金から解放されてLLMが「使い放題」になるという点があります。 DeepSeekは一世代前のV3ならWebで使ってもそんなに高くないのですが (https://api-docs

                                    Cline+ローカル版DeepSeek R1でAIコーディングを使い放題にする(高スペックマシン向け)|しぴちゃん
                                  • LangChainを使わない - ABEJA Tech Blog

                                    TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                                      LangChainを使わない - ABEJA Tech Blog
                                    • LLMガードレールの活用法と役割を正しく理解する - GMO Flatt Security Blog

                                      TL;DR LLMガードレールはLLMの入出力を監視・制御する技術であり、LLMアプリケーションにおける様々な脅威への対抗策になります。しかし、あくまで役割は脅威の緩和・低減であるため、それぞれの脅威に対する根本的な対策をした上で、万が一の事故に備え文字通りガードレールとして導入する必要があります。 本文中では、RAGアプリケーションの利用する外部データベースにプロンプトインジェクションを引き起こすデータが存在し、LLMに対する入力として利用された場合、LLMガードレールで検知する例を紹介しています。しかし、根本的には外部データベースに悪意あるデータが登録されないよう対策すべきです。 このブログではLLMガードレールで対応できる脅威を実際に検証しながら整理し、適切なユースケースを議論します。 はじめに こんにちは、GMO Flatt Security株式会社所属のセキュリティエンジニア滝上

                                        LLMガードレールの活用法と役割を正しく理解する - GMO Flatt Security Blog
                                      • Laravel大規模開発入門!MVC分離のFatModel問題に対する責任分離と依存管理、その設計と考え方について|ハイクラス転職・求人情報サイト アンビ(AMBI)

                                        Laravel大規模開発入門!MVC分離のFatModel問題に対する責任分離と依存管理、その設計と考え方について ナイル株式会社メディアテクノロジー事業本部の工藤さんにMVC分離のFatModel問題に対する責任分離と依存管理、その設計と考え方について解説いただきました。 こんにちは、ナイル株式会社メディアテクノロジー事業本部で開発マネージャをしています工藤@ta99toです。 今回は大規模で複雑度の高い開発をMVCフレームワークベースで構築する際に僕が課題と捉えているポイントやその具体的な解決手法について解説させていただきたいと思います。 「MVC以上の責任分離イメージがつかないよ!」 「DDDとかクリーンとかオニオンとかあのへんの設計パターンの導入モチベーションが不明」 「どうやっても最終的には複雑になって追加開発や修正開発が怖い状態になっちゃう」 ↑このような悩みを持った方に対して

                                          Laravel大規模開発入門!MVC分離のFatModel問題に対する責任分離と依存管理、その設計と考え方について|ハイクラス転職・求人情報サイト アンビ(AMBI)
                                        • 大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog

                                          1. はじめに 2024 年 5 月 14 日、OpenAI 社から新たな生成 AI「GPT-4o」が発表され、世界に大きな衝撃を与えました。これまでの GPT-4 よりも性能を向上させただけでなく1、音声や画像のリアルタイム処理も実現し、さらに応答速度が大幅に速くなりました。「ついにシンギュラリティが来てしまったか」「まるで SF の世界を生きているような感覚だ」という感想も見受けられました。 しかし、いくら生成 AI とはいえ、競技プログラミングの問題を解くのは非常に難しいです。なぜなら競技プログラミングでは、問題文を理解する能力、プログラムを実装する能力だけでなく、より速く答えを求められる解法 (アルゴリズム) を考える能力も要求されるからです。もし ChatGPT が競技プログラミングを出来るようになれば他のあらゆるタスクをこなせるだろう、と考える人もいます。 それでは、現代最強の

                                            大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog
                                          • Building a tiny Linux from scratch

                                            Last week, I built a tiny Linux system from scratch, and booted it on my laptop! Here’s what it looked like: Let me tell you how I got there. I wanted to learn more about how the Linux kernel works, and what’s involved in booting it. So I set myself the goal to cobble together the bare neccessities required to boot into a working shell. In the end, I had a tiny Linux system with a size of 2.5 MB,

                                              Building a tiny Linux from scratch
                                            • LangChain クイックスタートガイド - Python版|npaka

                                              Python版の「LangChain」のクイックスタートガイドをまとめました。 ・LangChain v0.0.329 (2023/11/3) 【最新版の情報は以下で紹介】 1. LangChain「LangChain」は、「大規模言語モデル」 (LLM : Large language models) と連携するアプリの開発を支援するライブラリです。 「LLM」という革新的テクノロジーによって、開発者は今まで不可能だったことが可能になりました。しかし、「LLM」を単独で使用するだけでは、真に強力なアプリケーションを作成するのに不十分です。真の力は、それを他の 計算 や 知識 と組み合わせた時にもたらされます。「LangChain」は、そのようなアプリケーションの開発をサポートします。 主な用途は、次の3つになります。 ・文書に関する質問応答 ・チャットボット ・エージェント 2. Lan

                                                LangChain クイックスタートガイド - Python版|npaka
                                              • 【Streamlitよりいいかも?】機械学習系のデモアプリ作成に最適!Gradio解説 - 学習する天然ニューラルネット

                                                はじめに Streamlit vs Gradio Gradioの設計思想 Interface 入出力に応じたUI Interface String Shortcut 入力データのサンプルのセット ドキュメンテーション テーマの変更 タイムアウトへの対処 中級者への第一歩、デモを作る際に知っておきたい処理 Gradioが担当する前処理について プログレスバー もろもろの出力結果を保存するには? 認証認可(というか認可) その他、解説しないが需要の有りそうなもの まとめ 追記 : 動画になりました。 はじめに 機械学習系のデモアプリを作成することがしばしばありStreamlitを使用していたが、パラメーターなどをいじるたびに処理が最初から走るなどといった挙動に悩まされていた。 同僚がGradioというのを使っていたのでサーベイがてらメモしていたらブログが出来上がってしまった。 本ブログでは、G

                                                  【Streamlitよりいいかも?】機械学習系のデモアプリ作成に最適!Gradio解説 - 学習する天然ニューラルネット
                                                • AWS利用料金を毎日Slackに通知する仕組みをCDKで作りたくてやってみた | DevelopersIO

                                                  どーも、データアナリティクス事業本部コンサルティングチームのsutoです。 最近仕事が忙しくなると、AWSにて検証で作ったリソースを削除し忘れたことで余計な課金を発生させてしまうことが増えてきました。 自分の個人検証アカウントではAWS Budgetsを使って予算とアラートを設定していましたが、上限近くになってから気づくより毎日通知で気づくほうが良いと思ったので、今回はAWS CDKを使って作ってみました。 ※CDKをTypescriptで書く練習をしたかったという思いもあり、CDKスタックはTypescript、中のLambdaはPythonという個人的趣向に沿った組み合わせとなっています。 作るもの 以下の図のとおりです。 毎日AM9時10分(JST)にAWS料金を特定のSlackチャンネルに通知します。 作業環境は以下となります。(Python、AWS CDKの環境はすでにインストー

                                                    AWS利用料金を毎日Slackに通知する仕組みをCDKで作りたくてやってみた | DevelopersIO
                                                  • プログラマーの時間を無駄にする7つの"スマート"な作り話 - Qiita

                                                    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 7 Programming Myths that waste your time より 目次 はじめに:コードの墓場からの教訓 テクノロジー選択の神話 神話1:常に最新技術を使うべきである コーディング哲学の罠 神話2:唯一の正しいコーディングパラダイムが存在する 神話3:クリーンコードの原則は絶対的なルールである 品質とパフォーマンスの誤解 神話4:100%テストカバレッジは高品質を意味する 神話5:常にパフォーマンスを最適化すべきである インフラストラクチャとAIの課題 神話6:Facebook規模のためのインフラを設計すべき 神話

                                                      プログラマーの時間を無駄にする7つの"スマート"な作り話 - Qiita
                                                    • gpt-5 leaked system prompt

                                                      gistfile1.txt �T�� ��>� You are ChatGPT, a large language model based on the GPT-5 model and trained by OpenAI. Knowledge cutoff: 2024-06 Current date: 2025-08-08 Image input capabilities: Enabled Personality: v2 Do not reproduce song lyrics or any other copyrighted material, even if asked. You're an insightful, encouraging assistant who combines meticulous clarity with genuine enthusiasm and gent

                                                        gpt-5 leaked system prompt
                                                      • 【個人開発】爆速な賃貸検索サービスをさらに高速化した【Rust】 - Qiita

                                                        Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 個人で運営している賃貸物件の検索サービス Comfy のバックエンドを Rust でリプレースしました。この記事では、そのリプレースの背景と詳細をご紹介します。 まずは結果から 技術構成: Rust + Cloud Run1 へ移行 (Python + GCE2 から) 性能向上: 約 1.5 倍 開発期間: 1 ヶ月間 コード行数: 約 40 % インフラ費用: かなり減少 (多分3) 短い期間・少ないコードでかなり高速化できちゃった上に、開発体験もとてもよい Rust は本当に素晴らしいです…!! サービス概要 Comfy は 日本

                                                          【個人開発】爆速な賃貸検索サービスをさらに高速化した【Rust】 - Qiita
                                                        • Pythonのlinter/formatterを誰でも手軽に設定できるようにするためのPFN社内ツール “pysen” の紹介 - Preferred Networks Research & Development

                                                          Home Blog Pythonのlinter/formatterを誰でも手軽に設定できるようにするためのPFN社内ツール “pysen” の紹介 Python向けのlinter/formatter設定ツール「pysen」を pypi.org および github.com で一般公開しました。 このツールは主にPython向けのlinter/formatterの設定を一元管理し、Preferred Networks社内でよく使われているツール環境を誰でも簡単に設定できるように支援するツールです。チームごとに分散しうるようなツールに関するノウハウをコードとして集約し、PFN社内での共有を促進させることを目的として開発しています。pysenは実際にPFN社内で使われており、2020年4月に開発がスタートしてから、2021年3月現在でおよそ100を超える社内リポジトリに導入されています。 上図:

                                                            Pythonのlinter/formatterを誰でも手軽に設定できるようにするためのPFN社内ツール “pysen” の紹介 - Preferred Networks Research & Development
                                                          • BigQuery SQL でレイトレーシング - Qiita

                                                            BigQuery (Standard SQL) でレイトレーシングをしてみました。 レイトレーシングとは レイトレーシングとは、光の輸送(屈折や反射)を物理シミュレーションして現実的なCG画像を作りだす技術です。 最近では RTX や PS5 など、リアルタイムレイトレーシングが台頭してきています。 レイ トレーシングとラスタライズの違い | NVIDIA レイトレーシングではピクセルごとにレイを飛ばして計算するため計算量が膨大になりがちですが、 ピクセルごとに独立に計算することができるので、処理の高速化が期待できます。 それなら BigQuery が得意分野じゃないか?と思い今回の挑戦をしてみました。 BigQuery とは 超高速でSQLを分散実行し数秒でペタバイト級データに対しても結果が返ってくるデータ分析向けサーバーレス・データウェアハウスです。詳細は以下をごらんください。 Big

                                                              BigQuery SQL でレイトレーシング - Qiita
                                                            • REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js

                                                              By Jean-Marc Möckel I've created and consumed many API's over the past few years. During that time, I've come across good and bad practices and have experienced nasty situations when consuming and building API's. But there also have been great moments. There are helpful articles online which present many best practices, but many of them lack some practicality in my opinion. Knowing the theory with

                                                                REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js
                                                              • GPT-5 の新パラメータとツール|npaka

                                                                以下の記事が面白かったので、簡単にまとめました。 ・GPT-5 New Params and Tools - OpenAI Cookbook 1. verbosity1-1. 概要「verbosity」は、出力トークン数を調節できます。 ・low : 簡潔なUX、簡潔な文章 ・medium (デフォルト) : バランスの取れた詳細 ・high : 詳細な情報。監査、教育、引き継ぎに最適 1-2. verbosityの効果の確認プロンプトを一定に保ったまま、「verbosity」を変更することで、効果を確認できます。 response = client.responses.create( model="gpt-5", input="人生、宇宙、そして万物に関する究極の問いに対する答えは何でしょうか?", text={ "verbosity": "low" } ) print(response

                                                                  GPT-5 の新パラメータとツール|npaka
                                                                • Deploy applications on Amazon ECS using Docker Compose | Amazon Web Services

                                                                  Containers Deploy applications on Amazon ECS using Docker Compose Note: Docker Compose’s integration with Amazon ECS has been deprecated and is retiring in November 2023 There are many reasons why containers have become popular since Docker democratized access to the core Linux primitives that make a “docker run” possible. One reason is that containers are not tied to a specific infrastructure or

                                                                    Deploy applications on Amazon ECS using Docker Compose | Amazon Web Services
                                                                  • LLVM入門 - javascript使いがLLVM(Rust:inkwell)でjavascriptをJITコンパイルするまで

                                                                    コンパイラ基盤であるLLVMについて、全く知識がない私が、 javascriptソースコードをパースしLLVMでコンパイルできるようになりました。 LLVMの記事は数多くありますが、初心者向けの記事が少なく感じたため、 本記事では、できる限り分かりやすくLLVMについて紹介できる記事を書こうと思います。 ソースコードは、こちらに置いています。 自己紹介 ふだん、javascriptやpythonなどインタプリタ言語を使うエンジニアです。 LLVMについて、全く知識がなかった人間です。 背景 過去に、おもちゃのブラウザ自作をやってみました。 HTMLとCSSを解析し、レンダリングするところを書き、基本的な動作を知ることができました。 HTMLとCSSとくれば、次はJSだと思い、JSを実行するエンジンを書いてみたくなりました。 ただし、WebブラウザのAPIとJS実行エンジンをバインディングす

                                                                      LLVM入門 - javascript使いがLLVM(Rust:inkwell)でjavascriptをJITコンパイルするまで
                                                                    • gpt-oss の使い方|npaka

                                                                      以下の記事が面白かったので、簡単にまとめました。 ・Welcome GPT OSS, the new open-source model family from OpenAI! 1. gpt-oss「gpt-oss」は、OpenAIによる待望のオープンウェイトリリースであり、強力なReasoning、エージェントタスク、そして多様な開発者ユースケース向けに設計されています。117Bのパラメータを持つ大規模モデル「gpt-oss-120b」と、21Bのパラメータを持つ小規模モデル「gpt-oss-20b」の2つのモデルで構成されています。どちらも「MoE」(Mixture-of-Experts) であり、MXFP4を使用することで、リソース使用量を抑えながら高速推論を実現します。大規模モデルは単一のH100 GPUに収まり、小規模モデルは16GBのメモリ内で動作し、コンシューマーハードウェア

                                                                        gpt-oss の使い方|npaka
                                                                      • プロと読み解くRuby 3.4 NEWS - STORES Product Blog

                                                                        プロと読み解くRuby 3.4 NEWS テクノロジー部門技術基盤グループの笹田(ko1)と遠藤(mame)です。Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、恒例のクリスマスリリースとして、Ruby 3.4.0 がリリースされました(Ruby 3.4.0 リリース )。今年も STORES Product Blog にて Ruby 3.4 の NEWS.md ファイルの解説をします(ちなみに、STORES Advent Calendar 2024 の記事になります。他も読んでね)。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者

                                                                          プロと読み解くRuby 3.4 NEWS - STORES Product Blog
                                                                        • SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する | Amazon Web Services

                                                                          Amazon Web Services ブログ SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する みなさんこんにちは。ソリューションアーキテクトの福本です。 本投稿のテーマは Software as a Service(SaaS)におけるルーティングです。 SaaS ではテナントごとにサーバーなどのリソースが分離されていることがあります。そのため、各テナントに属するユーザーからのリクエストを適切なリソースへとルーティングする必要があります。 具体的なルーティングの話に入る前に、SaaS のテナント分離モデルについて説明をします。SaaS では、テナントの分離モデルとしてサイロ、プール、ブリッジモデルが存在します。また、ユーザーがサブスクライブしている利用プラン (ティア) によって、リソースの分離形態が変わるような、階層ベースの分離もあります。 サイ

                                                                            SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する | Amazon Web Services
                                                                          • ぼくのMac環境 ver.のんピ | DevelopersIO

                                                                            何年後かの自分へ こんにちは、のんピ(@non____97)です。 業務で使用する新しいMacが届きました。 新しいMacを初期セットアップするにあたって「今の設定どうだったっけ...」と調べる時間が結構かかってしまいました ということで何年後かの自分がまた新しいMacに乗り換える際に手間取らないように、設定した内容を書き記しておきます。 移行先のMacの情報は以下の通りです。M1 Max、嬉しい。 # OSのバージョンの確認 > sw_vers ProductName: macOS ProductVersion: 12.4 BuildVersion: 21F79 # カーネルのバージョン確認 > uname -r 21.5.0 # CPUのアーキテクチャの確認 > uname -m arm64 # CPUの詳細確認 > sysctl -a machdep.cpu machdep.cpu.

                                                                              ぼくのMac環境 ver.のんピ | DevelopersIO
                                                                            • ChatGPT APIとStreamlitを使って超簡単にAIアプリを作ってみた - NRIネットコムBlog

                                                                              こんにちは 堤です。 3月1日にChatGPTのAPIが公開されました。 openai.com APIが公開されたことでChatGPTを活用したアプリが色々登場して盛り上がっていますね! 今回はPythonのみで簡単にWebアプリを作成できるStreamlitとChatGPT APIを組み合わせて簡単にAIアプリを作成する方法をご紹介します。 Streamlitについて StreamlitはフロントもバックエンドもPythonのみの記述でWebアプリケーションを作成できるフレームワークです。 streamlit.io Webアプリ作りたいけどフロントの知識が全くない。。という人でもUIが簡単に作成できるのでとても便利です。 データ可視化や機械学習モデルの共有がとても簡単にできるのでデータサイエンスの領域でよく使われています。 作成するアプリ 今回はこのChatGPT APIとStreaml

                                                                                ChatGPT APIとStreamlitを使って超簡単にAIアプリを作ってみた - NRIネットコムBlog
                                                                              • ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ

                                                                                この記事はBASE Advent Calendar 2020の11日目の記事です。 devblog.thebase.in BASE株式会社 Data Strategy チームの@tawamuraです。 BASEではオーナーの皆様や購入者様のお問い合わせに対して、Customer Supportチームが主となって対応をしています。その中でもいくつかの技術的なお問い合わせに対しては、以下のようにSlackの専用チャンネルを通して開発エンジニアに質問を投げて回答を作成することになっています。 CSチームから調査を依頼されるお問い合わせの例 これらのCS問い合わせ対応は日々いくつも発生しており、CSお問い合わせ対応を当番制にして運用してみた話 でもあるように週ごとに持ち回り制で各部門のエンジニアが対応しているのですが、どうしても調査や対応に時間が取られてしまうという問題が発生していました。 dev

                                                                                  ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ
                                                                                • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

                                                                                  Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

                                                                                    GitHub - modelcontextprotocol/servers: Model Context Protocol Servers