並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 506件

新着順 人気順

python if input is not in listの検索結果1 - 40 件 / 506件

  • Command Line Interface Guidelines

    Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

      Command Line Interface Guidelines
    • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

      いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

        日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
      • PDFを高品質なマークダウンに変換する方法|すぅ | AI駆動PM

        PDFファイルをマークダウンに変換する作業って、地味だけど本当に大切な作業ですよね。 「また手作業でコピペか...」 「レイアウトが崩れてる...」 「表がめちゃくちゃになってる...」 私もさまざまな文書管理の現場で同じような課題に直面してきました。特に、既存のPDF資料をObisidianやNotionなどのマークダウン形式で管理したい場面って、本当に多いですよね。 手作業でやると、一つの文書だけで数時間かかることもあります。表や画像の配置を調整して、リンクを張り直して、フォーマットを整えて...。骨が折れる作業です。 「もっと効率的な方法はないだろうか?」 そう思っていた矢先、いくつかの優秀な手法を発見しました。今回は、スキルレベル別に4つのアプローチをご紹介したいと思います。 【各レベルの概要】まず、それぞれのアプローチの特徴を簡単にご紹介しておきますね。 レベル1:GPT-5でシ

          PDFを高品質なマークダウンに変換する方法|すぅ | AI駆動PM
        • 本番環境で採用すべき26のAWSセキュリティベストプラクティス

          本文の内容は、2024年11月25日に Alejandro Villanueva が投稿したブログ(https://sysdig.com/blog/26-aws-security-best-practices/)を元に日本語に翻訳・再構成した内容となっております。 セキュリティは、 AWS Foundational セキュリティベストプラクティスの基本的な柱です。セキュリティリスクを最小限に抑え、環境を保護するには、サービス別にまとめられた AWS セキュリティベストプラクティスに従うことが不可欠です。この構造化されたアプローチは、潜在的な脆弱性に積極的に対処し、堅牢で安全なクラウドアーキテクチャーを維持するのに役立ちます。 AWS IAM(1) IAMポリシーでは、フルの ” * ” 管理者権限を許可すべきではない (2) IAMユーザーにはIAMポリシーを添付してはならない (3) I

            本番環境で採用すべき26のAWSセキュリティベストプラクティス
          • Ubuntu 24.04 LTS サーバ構築手順書

            0 issue "letsencrypt.org" 0 issuewild "letsencrypt.org" 0 iodef "mailto:yourmail@example.jp" §OS再インストール 初期設定で期待通りの設定ができていない場合は、OSの再インストールをする。 さくらVPSのコントロールパネルから、OSを再インストールするサーバを選ぶ。 www99999ui.vs.sakura.ne.jp §OSのインストール操作 Ubuntu 24.04 LTS を選ぶ。 OSインストール時のパケットフィルタ(ポート制限)を無効にして、ファイアウォールは手動で設定することにする。 初期ユーザのパスワードに使える文字が制限されているので、ここでは簡単なパスワードにしておき、後ですぐに複雑なパスワードに変更する。 公開鍵認証できるように公開鍵を登録しておく。 §秘密鍵と公開鍵の作成 ク

              Ubuntu 24.04 LTS サーバ構築手順書
            • 【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい

              はじめに 対象イベント 読み方、使い方 Remote Code Execution(RCE) 親ディレクトリ指定によるopen_basedirのバイパス PHP-FPMのTCPソケット接続によるopen_basedirとdisable_functionsのバイパス JavaのRuntime.execでシェルを実行 Cross-Site Scripting(XSS) nginx環境でHTTPステータスコードが操作できる場合にCSPヘッダーを無効化 GoogleのClosureLibraryサニタイザーのXSS脆弱性 WebのProxy機能を介したService Workerの登録 括弧を使わないXSS /記号を使用せずに遷移先URLを指定 SOME(Same Origin Method Execution)を利用してdocument.writeを順次実行 SQL Injection MySQ

                【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい
              • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

                FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

                  FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
                • プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ

                  技術部の笹田(ko1)と遠藤(mame)です。クックパッドで Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、ついに Ruby 3.0.0 がリリースされました。一昨年、昨年に続き、今年も Ruby 3.0 の NEWS.md ファイルの解説をします。NEWS ファイルとは何か、は一昨年の記事を見てください(なお Ruby 3.0.0 から、NEWS.md にファイル名を変えました)。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者ブログ プロと読み解くRuby 2.7 NEWS - クックパッド開発者ブログ Ruby 3.0 は、Ruby にとってほぼ 8 年ぶりのメジャーバージョンア

                    プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ
                  • コーディングエージェントの能力を拡張する Serena を試してみた

                    LSP を活用してセマンティックなコード検索・編集能力を提供する MCP サーバー Serena の導入・使用方法を紹介。Claude Code でのオンボーディングからリファクタリングまでの実践的な活用例を解説します。 Serena はセマンティックなコード検索・編集能力を追加するオープンソースのツールキットです。MCP(Model Context Protocol) サーバーとして動作しているため、Claude Code や Cursor, VS Code のように MCP に対応しているクライアントであれば利用できます。またエージェントフレームワークとして Agno を使用しているため、特定の LLM モデルに依存せずに動作します。 Serena は LSP(Language Server Protocol)を使用してセマンティックなコードを解析するのが特徴です。LSP はコードの構

                      コーディングエージェントの能力を拡張する Serena を試してみた
                    • LangChainを使わない - ABEJA Tech Blog

                      TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                        LangChainを使わない - ABEJA Tech Blog
                      • みんなのためのLLMアプリケーション開発環境の構築事例

                        はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

                          みんなのためのLLMアプリケーション開発環境の構築事例
                        • LLMフレームワークのセキュリティリスク - LangChain, Haystack, LlamaIndex等の脆弱性事例に学ぶ - GMO Flatt Security Blog

                          はじめに こんにちは。GMO Flatt Security株式会社セキュリティエンジニアの森(@ei01241)です。 近年、大規模言語モデル(LLM)の進化により、チャットボット、データ分析・要約、自律型エージェントなど、多岐にわたるAIアプリケーション開発が進んでいます。LangChainやLlamaIndexのようなLLMフレームワークは、LLM連携や外部データ接続などを抽象化し開発効率を向上させる一方、その利便性の背後には新たなセキュリティリスクも存在します。 本稿では、LLMフレームワークを利用・開発する際に発生しやすい脆弱性を具体的なCVEを交えて解説し、それぞれ脆弱性から教訓を学びます。そして、それらの教訓から開発者が知っておくべき対策案についても紹介します。 また、GMO Flatt SecurityはLLMを活用したアプリケーションに対する脆弱性診断・ペネトレーションテス

                            LLMフレームワークのセキュリティリスク - LangChain, Haystack, LlamaIndex等の脆弱性事例に学ぶ - GMO Flatt Security Blog
                          • TabFS

                            Going through the files inside a tab's folder. For example, the url.txt, text.txt, and title.txt files tell me those live properties of this tab (Read more up-to-date documentation for all of TabFS's files here.) This gives you a ton of power, because now you can apply all the existing tools on your computer that already know how to deal with files -- terminal commands, scripting languages, point-

                              TabFS
                            • 大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog

                              1. はじめに 2024 年 5 月 14 日、OpenAI 社から新たな生成 AI「GPT-4o」が発表され、世界に大きな衝撃を与えました。これまでの GPT-4 よりも性能を向上させただけでなく1、音声や画像のリアルタイム処理も実現し、さらに応答速度が大幅に速くなりました。「ついにシンギュラリティが来てしまったか」「まるで SF の世界を生きているような感覚だ」という感想も見受けられました。 しかし、いくら生成 AI とはいえ、競技プログラミングの問題を解くのは非常に難しいです。なぜなら競技プログラミングでは、問題文を理解する能力、プログラムを実装する能力だけでなく、より速く答えを求められる解法 (アルゴリズム) を考える能力も要求されるからです。もし ChatGPT が競技プログラミングを出来るようになれば他のあらゆるタスクをこなせるだろう、と考える人もいます。 それでは、現代最強の

                                大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog
                              • act: GitHub Actions のワークフローをローカル環境で実行する - kakakakakku blog

                                GitHub Actions でワークフローを実行するときに git commit と git push を実行して GitHub Actions の実行を待つことがよくある.より迅速に実行して,結果を受け取るために「act」を使って GitHub Actions をローカル環境(コンテナ)で実行する仕組みを試してみた.便利だったので紹介しようと思う❗️ 当然ながら GitHub Actions を完全再現できてるわけではなく,最終的には GitHub Actions を使うことにはなるけど,特に開発中に頻繁にテストを実行できるのはメリットだと思う.うまく併用しながら開発体験を高めよう👌 github.com セットアップ macOS の場合は Homebrew を使って簡単にセットアップできる.他には Chocolatey (Windows) や Bash script も選べる.今回

                                  act: GitHub Actions のワークフローをローカル環境で実行する - kakakakakku blog
                                • Announcing New Tools for Building with Generative AI on AWS | Amazon Web Services

                                  Artificial Intelligence Announcing New Tools for Building with Generative AI on AWS The seeds of a machine learning (ML) paradigm shift have existed for decades, but with the ready availability of scalable compute capacity, a massive proliferation of data, and the rapid advancement of ML technologies, customers across industries are transforming their businesses. Just recently, generative AI appli

                                    Announcing New Tools for Building with Generative AI on AWS | Amazon Web Services
                                  • Qwen3 の概要|npaka

                                    以下の記事が面白かったので、簡単にまとめました。 ・Qwen3: Think Deeper, Act Faster 1. Qwen3本日 (2025年4月28日) 、「Qwen3」をリリースしました。「Qwen3-235B-A22B」は、「DeepSeek-R1」「o1」「o3-mini」「Grok-3」「Gemini-2.5-Pro」などの他のトップティアモデルと比較して、コーディング、数学、一般的な機能などのベンチマーク評価で競争力のある結果を達成しています。さらに、小型のMoEである「Qwen3-30B-A3B」は、10倍のアクティブパラメータを持つ「QwQ-32B」を凌駕し、「Qwen3-4B」のような小さなモデルでさえ、「Qwen2.5-72B-Instruct」の性能に匹敵します。 2つのMoEモデルをオープンウェイト化しています。「Qwen3-235B-A22B」は、総パラメ

                                      Qwen3 の概要|npaka
                                    • GPT-5 の新パラメータとツール|npaka

                                      以下の記事が面白かったので、簡単にまとめました。 ・GPT-5 New Params and Tools - OpenAI Cookbook 1. verbosity1-1. 概要「verbosity」は、出力トークン数を調節できます。 ・low : 簡潔なUX、簡潔な文章 ・medium (デフォルト) : バランスの取れた詳細 ・high : 詳細な情報。監査、教育、引き継ぎに最適 1-2. verbosityの効果の確認プロンプトを一定に保ったまま、「verbosity」を変更することで、効果を確認できます。 response = client.responses.create( model="gpt-5", input="人生、宇宙、そして万物に関する究極の問いに対する答えは何でしょうか?", text={ "verbosity": "low" } ) print(response

                                        GPT-5 の新パラメータとツール|npaka
                                      • プロと読み解くRuby 3.4 NEWS - STORES Product Blog

                                        プロと読み解くRuby 3.4 NEWS テクノロジー部門技術基盤グループの笹田(ko1)と遠藤(mame)です。Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、恒例のクリスマスリリースとして、Ruby 3.4.0 がリリースされました(Ruby 3.4.0 リリース )。今年も STORES Product Blog にて Ruby 3.4 の NEWS.md ファイルの解説をします(ちなみに、STORES Advent Calendar 2024 の記事になります。他も読んでね)。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者

                                          プロと読み解くRuby 3.4 NEWS - STORES Product Blog
                                        • ぼくのMac環境 ver.のんピ | DevelopersIO

                                          何年後かの自分へ こんにちは、のんピ(@non____97)です。 業務で使用する新しいMacが届きました。 新しいMacを初期セットアップするにあたって「今の設定どうだったっけ...」と調べる時間が結構かかってしまいました ということで何年後かの自分がまた新しいMacに乗り換える際に手間取らないように、設定した内容を書き記しておきます。 移行先のMacの情報は以下の通りです。M1 Max、嬉しい。 # OSのバージョンの確認 > sw_vers ProductName: macOS ProductVersion: 12.4 BuildVersion: 21F79 # カーネルのバージョン確認 > uname -r 21.5.0 # CPUのアーキテクチャの確認 > uname -m arm64 # CPUの詳細確認 > sysctl -a machdep.cpu machdep.cpu.

                                            ぼくのMac環境 ver.のんピ | DevelopersIO
                                          • The Prompt Engineering Playbook for Programmers

                                            Developers are increasingly relying on AI coding assistants to accelerate our daily workflows. These tools can autocomplete functions, suggest bug fixes, and even generate entire modules or MVPs. Yet, as many of us have learned, the quality of the AI’s output depends largely on the quality of the prompt you provide. In other words, prompt engineering has become an essential skill. A poorly phrased

                                              The Prompt Engineering Playbook for Programmers
                                            • Performance comparison: counting words in Python, Go, C++, C, AWK, Forth, and Rust

                                              Performance comparison: counting words in Python, Go, C++, C, AWK, Forth, and Rust March 2021 Summary: I describe a simple interview problem (counting frequencies of unique words), solve it in various languages, and compare performance across them. For each language, I’ve included a simple, idiomatic solution as well as a more optimized approach via profiling. Go to: Constraints | Python Go C++ C

                                              • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

                                                Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

                                                  GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
                                                • Fish 4.0: The Fish Of Theseus

                                                  About two years ago, our head maintainer @ridiculousfish opened what quickly became our most-read pull request: #9512 - Rewrite it in Rust Truth be told, we did not quite expect that to be as popular as it was. It was written as a bit of an in-joke for the fish developers first, and not really as a press release to be shared far and wide. We didn’t post it anywhere, but other people did, and we go

                                                  • Introducing Amazon Managed Workflows for Apache Airflow (MWAA) | Amazon Web Services

                                                    AWS News Blog Introducing Amazon Managed Workflows for Apache Airflow (MWAA) As the volume and complexity of your data processing pipelines increase, you can simplify the overall process by decomposing it into a series of smaller tasks and coordinate the execution of these tasks as part of a workflow. To do so, many developers and data engineers use Apache Airflow, a platform created by the commun

                                                      Introducing Amazon Managed Workflows for Apache Airflow (MWAA) | Amazon Web Services
                                                    • Python×株式投資:従来の100倍!銘柄選抜のバックテストを高速化した話 - Qiita

                                                      # ----------------------------- # 2nd Screening V1 # ----------------------------- import time global_start_time = time.time() from google.colab import drive drive.mount('/content/drive') import pandas as pd import numpy as np import os from tqdm.notebook import tqdm import yfinance as yf from curl_cffi import requests # -------------------------------------------------- # ヘルパー関数定義セクション # --------

                                                        Python×株式投資:従来の100倍!銘柄選抜のバックテストを高速化した話 - Qiita
                                                      • GPT in 60 Lines of NumPy | Jay Mody

                                                        January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                                                        • Amazon Linux 2023がGAされました | DevelopersIO

                                                          抜粋 : Release cadence - Amazon Linux 2023 メジャーリリースとマイナーリリースの内容は以下AWS公式ドキュメントに記載されています。メジャーリリース時には互換性があるか十分に検証した上でアップデートしましょう。 Major version release— Includes new features and improvements in security and performance across the stack. The improvements might include major changes to the kernel, toolchain, Glib C, OpenSSL, and any other system libraries and utilities. Major releases of Amazon Linux ar

                                                            Amazon Linux 2023がGAされました | DevelopersIO
                                                          • これぞ革命!?ゼロから大規模言語モデルを学習できるReLORA登場(7/18追記あり)|shi3z

                                                            導入 本当に革命的な技術なのか? 「君たちはどう生きるか」で驚いている間にすごい論文が世界の話題を掻っ攫っていた。 その名も「ReLORA」簡単に言えば、「事前学習にLoRAを使う」というものである。 これは本当に革命的な発見かもしれないので、僕の仮説も含めて丁寧に説明する。 まず、大前提として、「LoRA」という技術について LoRAは、「Low Rank Adaptation(日本語で言うとすれば低階適応)」という技術で、これまでは主にファインチューニングに使われてきた。 ファインチューニングとは、あらかじめ学習されたニューラルネットワークに対して追加で学習させ、概念を強調させたり新しく覚えさせたりする。 たとえば、僕の顔でStableDiffusionをファインチューニングすれば、僕みたいな顔の絵がどんどん出てくる。 言語モデルにおけるLoRAも同様で、新しい概念や「こういうやりとり

                                                              これぞ革命!?ゼロから大規模言語モデルを学習できるReLORA登場(7/18追記あり)|shi3z
                                                            • Making JavaScript run fast on WebAssembly - Bytecode Alliance

                                                              JavaScript in the browser runs many times faster than it did two decades ago. And that happened because the browser vendors spent that time working on intensive performance optimizations. Today, we’re starting work on optimizing JavaScript performance for entirely different environments, where different rules apply. And this is possible because of WebAssembly. We should be clear here—if you’re run

                                                                Making JavaScript run fast on WebAssembly - Bytecode Alliance
                                                              • Amazon Bedrock Is Now Generally Available – Build and Scale Generative AI Applications with Foundation Models | Amazon Web Services

                                                                AWS News Blog Amazon Bedrock Is Now Generally Available – Build and Scale Generative AI Applications with Foundation Models Update October 10, 2023 — Amazon Bedrock is now available in 3 regions globally: US East (N. Virginia), US West (Oregon), and Asia Pacific (Tokyo). This April, we announced Amazon Bedrock as part of a set of new tools for building with generative AI on AWS. Amazon Bedrock is

                                                                  Amazon Bedrock Is Now Generally Available – Build and Scale Generative AI Applications with Foundation Models | Amazon Web Services
                                                                • Introducing Ezno

                                                                  Ezno is an experimental compiler I have been working on and off for a while. In short, it is a JavaScript compiler featuring checking, correctness and performance for building full-stack (rendering on the client and server) websites. This post is just an overview of some of the features I have been working on which I think are quite cool as well an overview on the project philosophy ;) It is still

                                                                    Introducing Ezno
                                                                  • ClaudeのMCPを徹底解説! & gpt-4o+MCP+YouTube APIの動画推薦チャットAIも作る - Qiita

                                                                    mcp_server_youtube という名前にしました。 mcp_server_youtube というディレクトリができます。 mcp_server_youtube/src/mcp_server_youtube/server.py にサーバー実装を記述します。 実装 MCPサーバーの実装はほとんどgpt-4oを使って行いました。 ポイント 今回はこのサーバーに登録されたツールが youtube-search のみなので、handle_call_tool に到着したリクエストが youtube-search と一致している場合のみ処理行います YouTube Data API v3 は単純にAPIを実装するだけです これの嬉しさ 普通にfunction callingからAPIを叩くだけなら、MCPサーバーはいりません。ただ、独立したMCPサーバーとして作ることで再利用がしやすい形になり

                                                                      ClaudeのMCPを徹底解説! & gpt-4o+MCP+YouTube APIの動画推薦チャットAIも作る - Qiita
                                                                    • 【Python 3.12】型ヒント機能がいつの間にか進化していたので、慌ててキャッチアップする - ABEJA Tech Blog

                                                                      ABEJA でプロダクト開発を行っている平原です。 先日、バックエンドで使っているGo言語のお勉強しようと「go言語 100Tips ありがちなミスを把握し、実装を最適化する」を読んでいました。その中でinterfaceは(パッケージを公開する側ではなく)受け側で定義するべきという記述を見つけてPythonでも同じことできないかと調べていると(PythonではProtocolを使うとうまくいきそうです。)、どうやら型ヒント機能がかなりアップデートされていることに気づき慌てて再入門しました。(3.7, 3.8あたりで止まってました。。) この記事では、公式ドキュメントを見ながら適当にコードを書き散らし、どの機能はどこまで使えるのか試してみたことをまとめてみました。 docs.python.org 環境 Python: 3.12.1 エディタ: Visual Studio Code Pylan

                                                                        【Python 3.12】型ヒント機能がいつの間にか進化していたので、慌ててキャッチアップする - ABEJA Tech Blog
                                                                      • Raspberry PiとAWSを利用して子どもたちのゲーム時間を可視化してみた | DevelopersIO

                                                                        DynamoDBの作成 さっそくテーブルをCDKで構築してみます。 from aws_cdk import ( Stack, RemovalPolicy, aws_dynamodb as dynamodb, # DynamoDBのライブラリをimport ) from constructs import Construct class GameCounterStack(Stack): def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) # The code that defines your stack goes here # ここから下に追記していきます。 # DynamoDB ログデータ格納用

                                                                          Raspberry PiとAWSを利用して子どもたちのゲーム時間を可視化してみた | DevelopersIO
                                                                        • PyTorch vs TensorFlow in 2023

                                                                          PyTorch and TensorFlow are far and away the two most popular Deep Learning frameworks today. The debate over which framework is superior is a longstanding point of contentious debate, with each camp having its share of fervent supporters. Both PyTorch and TensorFlow have developed so quickly over their relatively short lifetimes that the debate landscape is ever-evolving. Outdated or incomplete in

                                                                          • yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳

                                                                            youtube-dlの開発が止まっておりfork版のyt-dlpに移る事にした。yt-dlpはyoutube-dlのforkであるyoutube-dlcのそのまたforkになる。オリジナルであるyoutube-dlのオプション解説はyoutube-dl オプション一覧及びそのメモ。 2022/06/19更新 2022/09/06更新 OPTIONS -h, --helpヘルプを表示する。 --versionプログラムのVerを表示する。 -U, --update --no-update (default)プログラムのupdateを実行するかどうか。 -i, --ignore-errorsダウンロードエラーを無視する。プレイリストごとダウンロードするような時に使う。エラーで失敗してもダウンロードは成功したとみなされる。 --no-abort-on-error (default) --abor

                                                                              yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳
                                                                            • 第734回 UbuntuでSBOM(ソフトウェア部品表)を作る方法 | gihyo.jp

                                                                              「SBOM(Software Bill Of Materials:ソフトウェア部品表)」という概念があります。これはあるソフトウェアを構築する上で利用しているライブラリの一覧をまとめたものです。また、システムにインストールされているソフトウェア一覧を示す場合もあります。今回は手元のUbuntuにインストールされているソフトウェア一覧を簡易的にまとめる方法を紹介しましょう。 SBOMの必要性 昨今のソフトウェアは多種多様なライブラリに依存しながら構築されています。太古のC言語のプログラムなら、シンプルなものならlibcだけ、そこそこ複雑なものでも2、3個のライブラリに依存するだけで済むことが大半でした。それが今風のプログラミング言語になると、特定の便利そうなライブラリに依存するだけで、「⁠だったら俺も僕も私もミーも」といくつものライブラリがバンドルされてしまうのです。 結果的に広く使われてい

                                                                                第734回 UbuntuでSBOM(ソフトウェア部品表)を作る方法 | gihyo.jp
                                                                              • 【技術選定/OSS編】LLMプロダクト開発にLangSmithを使って評価と実験を効率化した話 - Gaudiy Tech Blog

                                                                                こんにちは。ファンと共に時代を進める、Web3スタートアップ Gaudiy の seya (@sekikazu01)と申します。 この度 Gaudiy では LangSmith を使った評価の体験をいい感じにするライブラリ、langsmith-evaluation-helper を公開しました。 github.com 大まかな機能としては次のように config と、詳細は後で載せますが、LLMを実行する関数 or プロンプトテンプレートと評価を実行する関数を書いて description: Testing evaluations prompt: entry_function: toxic_example_prompts providers: - id: TURBO config: temperature: 0.7 - id: GEMINI_PRO config: temperature:

                                                                                  【技術選定/OSS編】LLMプロダクト開発にLangSmithを使って評価と実験を効率化した話 - Gaudiy Tech Blog
                                                                                • 900行のコードをノーミスで出力するClaude 3.5 Sonnet (New) やるなお主|平岡憲人(ノーリー)

                                                                                  こんにちは! ノーリーです。ClaudeやChatGPT、Gemini使ってますか? 今朝リリースされた、Claude 3.5 Sonnet (New)のコード生成能力を味う記事です。 では、まったり参りましょう! 1.公式情報Claude 3.5 Sonnetは、コーディング能力において大きな進化を遂げたAIモデルだそうです。このモデルの新機能と改善点は以下の通りです。 強化されたコーディング支援: Claude 3.5 Sonnetは、JavaScriptやPythonなどの様々なプログラミング言語でコード生成する能力に優れています。簡単なコード補完から複雑な問題解決シナリオまで対応可能で、開発プロセスを大幅に効率化できます。 問題解決能力の向上: HumanEvalベンチマークで64%の問題を解決する能力を示し、前バージョンのClaude 3 Opusの38%から大幅に向上しました。

                                                                                    900行のコードをノーミスで出力するClaude 3.5 Sonnet (New) やるなお主|平岡憲人(ノーリー)