並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 159件

新着順 人気順

python if key not in dictの検索結果1 - 40 件 / 159件

  • OpenAI API の ファインチューニングガイド|npaka

    1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

      OpenAI API の ファインチューニングガイド|npaka
    • Pythonで理解するMCP(Model Context Protocol) | gihyo.jp

      動作環境 Python 3.12 ライブラリの使用バージョン gradio 5.34.2 anthropic 0.54.0 mcp 1.9.4 python-dotenv 1.1.0 仮想環境とライブラリインストール % cd mcp-host-with-gradio % python3 -m venv venv % source venv/bin/activate (venv) % pip install gradio anthropic mcp dotenv .envファイルの設定 AnthropicのAPIキーが必要です。APIキーの作成は以下を参考にしてください。APIの利用には料金がかかりますが、API従量課金であれば5ドルから始めることが可能です。 Claudeを使い始める -Anthropic .env ANTHROPIC_API_KEY=xxxxxxxxxxxxxxxxxx

        Pythonで理解するMCP(Model Context Protocol) | gihyo.jp
      • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

        FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

          FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
        • LangChainを使わない - ABEJA Tech Blog

          TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

            LangChainを使わない - ABEJA Tech Blog
          • みんなのためのLLMアプリケーション開発環境の構築事例

            はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

              みんなのためのLLMアプリケーション開発環境の構築事例
            • LLMガードレールの活用法と役割を正しく理解する - GMO Flatt Security Blog

              TL;DR LLMガードレールはLLMの入出力を監視・制御する技術であり、LLMアプリケーションにおける様々な脅威への対抗策になります。しかし、あくまで役割は脅威の緩和・低減であるため、それぞれの脅威に対する根本的な対策をした上で、万が一の事故に備え文字通りガードレールとして導入する必要があります。 本文中では、RAGアプリケーションの利用する外部データベースにプロンプトインジェクションを引き起こすデータが存在し、LLMに対する入力として利用された場合、LLMガードレールで検知する例を紹介しています。しかし、根本的には外部データベースに悪意あるデータが登録されないよう対策すべきです。 このブログではLLMガードレールで対応できる脅威を実際に検証しながら整理し、適切なユースケースを議論します。 はじめに こんにちは、GMO Flatt Security株式会社所属のセキュリティエンジニア滝上

                LLMガードレールの活用法と役割を正しく理解する - GMO Flatt Security Blog
              • PythonでDDDやってみた💪 - techtekt

                はじめに 実行環境 ディレクトリ構造 app migrations/model pyproject.toml ソースコードと簡単な解説 app/core app/core/abstract app/core/decorator app/core/exception app/core/interface app/core/middleware app/core/mixin app/ddd app/ddd/application app/ddd/application/schema app/ddd/application/schema/studnet app/ddd/application/usecase app/ddd/application/usecase/student app/ddd/domain app/ddd/domain/student app/ddd/infra app/ddd

                  PythonでDDDやってみた💪 - techtekt
                • Python普及しろ協会に入会したい

                  この記事はタナイ氏によるPython滅ぼす協会に入会したいを読んでから執筆したものです。 この記事の趣旨はPython滅ぼす協会に入会したいに対する反論という形をとりながら、タナイ氏により「バカの言語」と揶揄され、「使ってエンジニアを名乗るというのは」「滑稽」とまで言われたPythonの立場を再考することです。 追記 本記事は「Pythonはこれだけ優れた言語だからみんな使おう!」というものではなく「言うほど酷くないと思うよ」程度のものです。 型アノテーションがあるからと言って静的型付けを軽視しているわけでもなければ、map関数をもってmapメソッドを不要だと言っているわけでもありません。 この記法は嫌い〜この記法が好き〜と表明することは個人の自由ですが、同様に「この記法は実はこういう意味があって〜」という意見があればそれを聞いた上で、物事を判断して欲しいです。もちろん、聞いても意見が変わ

                    Python普及しろ協会に入会したい
                  • gpt-oss の使い方|npaka

                    以下の記事が面白かったので、簡単にまとめました。 ・Welcome GPT OSS, the new open-source model family from OpenAI! 1. gpt-oss「gpt-oss」は、OpenAIによる待望のオープンウェイトリリースであり、強力なReasoning、エージェントタスク、そして多様な開発者ユースケース向けに設計されています。117Bのパラメータを持つ大規模モデル「gpt-oss-120b」と、21Bのパラメータを持つ小規模モデル「gpt-oss-20b」の2つのモデルで構成されています。どちらも「MoE」(Mixture-of-Experts) であり、MXFP4を使用することで、リソース使用量を抑えながら高速推論を実現します。大規模モデルは単一のH100 GPUに収まり、小規模モデルは16GBのメモリ内で動作し、コンシューマーハードウェア

                      gpt-oss の使い方|npaka
                    • 既存リソースをTerraformでimportする作業を楽にする - KAYAC Engineers' Blog

                      SREチームの今です。 カヤックでは、クラウドリソースの管理にはTerraformを利用することが多いです。 クラウドリソースの構成や設定をコードで管理することで、リソースの変更内容の差分をレビューできる、意図しない設定変更を発見できるなどの利点があり、SREの目的であるサービスを安定して提供する上で重要な要素の一つです。 実際の作業として、既に運用中のサービスを新たにTerraform管理下に置く場合や、多くのリソースが既にweb consoleから作成されているものをTerraform管理下に追加する場合も多いと思います。 その際にはTerraform importをする必要があります。しかし、Terraform importは単純作業とはいえ時間と手間がかかり、優先順位を下げてついつい後回しにしてしまうことも多いのではないでしょうか。 今回は、手作業でTerraform import

                        既存リソースをTerraformでimportする作業を楽にする - KAYAC Engineers' Blog
                      • Performance comparison: counting words in Python, Go, C++, C, AWK, Forth, and Rust

                        Performance comparison: counting words in Python, Go, C++, C, AWK, Forth, and Rust March 2021 Summary: I describe a simple interview problem (counting frequencies of unique words), solve it in various languages, and compare performance across them. For each language, I’ve included a simple, idiomatic solution as well as a more optimized approach via profiling. Go to: Constraints | Python Go C++ C

                        • GPT in 60 Lines of NumPy | Jay Mody

                          January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                          • LMQL(Language Model Query Language)概観|mah_lab / 西見 公宏

                            LMQL Playgroundでクエリを試すLMQLには動作を簡単に検証できるPlaygroundが用意されています。ローカルでPlaygroundを起動することもできます。 まずはGetting Startedで紹介されている以下のクエリを実行します。 argmax "Hello[WHO]" from "openai/text-ada-001" where len(WHO) < 10「Run」ボタンをクリックするとOpenAIのAPI KEYを求められるので、入力します。 実行するとModel Responseの枠に結果が表示されます。 LMQLの基本構造LMQLは記法的にはSQLと似ていて、以下のような構造を持っています。 デコーダ節(Decoder Clause): テキスト生成に使用するデコード・アルゴリズムを指定します。LMQLでは様々なデコード・アルゴリズムを選択することができ

                              LMQL(Language Model Query Language)概観|mah_lab / 西見 公宏
                            • ClaudeのMCPを徹底解説! & gpt-4o+MCP+YouTube APIの動画推薦チャットAIも作る - Qiita

                              mcp_server_youtube という名前にしました。 mcp_server_youtube というディレクトリができます。 mcp_server_youtube/src/mcp_server_youtube/server.py にサーバー実装を記述します。 実装 MCPサーバーの実装はほとんどgpt-4oを使って行いました。 ポイント 今回はこのサーバーに登録されたツールが youtube-search のみなので、handle_call_tool に到着したリクエストが youtube-search と一致している場合のみ処理行います YouTube Data API v3 は単純にAPIを実装するだけです これの嬉しさ 普通にfunction callingからAPIを叩くだけなら、MCPサーバーはいりません。ただ、独立したMCPサーバーとして作ることで再利用がしやすい形になり

                                ClaudeのMCPを徹底解説! & gpt-4o+MCP+YouTube APIの動画推薦チャットAIも作る - Qiita
                              • Claude Desktopに記憶を与えるLocal Memory MCPを自作してみて感動した話

                                はじめに Claude Sonnet 4はコーディングが得意だけでなく、ほかのAIより人間性豊かで会話していて深い哲学的な気づきを得られる。そのため、技術的なところだけでなくプライベートのことも含めていろいろ話している。 ただ、ChatGPTと異なりメモリ機能を備え付けではないので、正直物足りないことも多かった。 Claude Desktop では MCP を使えるので、自分で MCP を作ればツール自作できるということに気づいた。そこでローカルで簡易的なメモリ機能を実装してみたら、個人的にとても感動した。 *全体的に個人的感想が多く含まれてます。すみません。 実際に何ができるようになったか まず、どんなことができるようになったか見てもらった方が早いと思う。 私はなぜLocal Memory MCPを作ったかを聞いたら 記憶をベースにかなり詳細な理由を述べてくれた。 AWSが出した新しいA

                                  Claude Desktopに記憶を与えるLocal Memory MCPを自作してみて感動した話
                                • CIの時間を(できるだけ楽して)半分にしてみた - Nealle Developer's Blog

                                  こんにちは、ニーリーの佐古です。 現在開発速度や開発者体験の向上のため、取り組みの諸々を遂行しています。 開発者体験とCI 天井の雨漏りが4か月ほど止まらないので私の開発者体験は酷いことになっています。 さて、皆さんCIの待ち時間はお好きですか?私は大嫌いです。 弊社バックエンドリポジトリのPR時CIはプロダクトの成長に合わせて実行時間が順調に伸びており、 開発速度と開発者体験の双方に悪影響をもたらしていました。 実は別チームで改善のための試みがなされたことはあったのですが、 そこで行き当たった問題をある程度解決してどうにかエピソードになる程度の成果を得られたので 簡単に記しておこうと思います。 前提 プロダクトはDjangoで、リポジトリはGitHubで管理されています。 AS-WAS ついこないだまでのPR時CI。 こちらがもともとのGitHub CIのグラフです。 正直経験上そこまで

                                    CIの時間を(できるだけ楽して)半分にしてみた - Nealle Developer's Blog
                                  • SHAPで因果関係を説明できる? - Qiita

                                    はじめに 予測モデル(機械学習モデル)を解釈するのに有用なSHAPを用いて因果関係を説明することができるか、についてPythonによるシミュレーションを交えてまとめました。内容に誤り等ございましたら、ご指摘いただけますと幸いです。 結論 基本的に、SHAPで因果関係は説明できません。これは、SHAPが予測モデルの因果ではなく相関を明らかにするものであるからです。 そこで今回は、予測モデルをSHAPで解釈する上でありがちなミスリーディングや、それに関連する因果効果を推定するためのアプローチについて記載しています。 そもそもSHAPとは SHAPとはSHapley Additive exPlanationsの略で、協力ゲーム理論のShapley Valueを機械学習に応用した手法です。「その予測モデルがなぜ、その予測値を算出しているか」を解釈するためのツールとしてオープンソースのライブラリが開

                                      SHAPで因果関係を説明できる? - Qiita
                                    • ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)

                                      (module (function_definition (identifier) # ← ここに関数名「sample_func」が含まれます (parameters) (block (expression_statement (call (identifier) (argument_list (string)))))) (expression_statement (call (identifier) (argument_list)))) ノードが色々取れましたが、「function_definition」が関数、その子である「identifier」が関数名を表すため、 function_definition == 子ノード ==> identifier となっている箇所を探索すれば抽出できます(関数ではあっても「lambda」など異なる場合もあります)。 今回は上記のようにTree-si

                                        ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)
                                      • 【技術選定/OSS編】LLMプロダクト開発にLangSmithを使って評価と実験を効率化した話 - Gaudiy Tech Blog

                                        こんにちは。ファンと共に時代を進める、Web3スタートアップ Gaudiy の seya (@sekikazu01)と申します。 この度 Gaudiy では LangSmith を使った評価の体験をいい感じにするライブラリ、langsmith-evaluation-helper を公開しました。 github.com 大まかな機能としては次のように config と、詳細は後で載せますが、LLMを実行する関数 or プロンプトテンプレートと評価を実行する関数を書いて description: Testing evaluations prompt: entry_function: toxic_example_prompts providers: - id: TURBO config: temperature: 0.7 - id: GEMINI_PRO config: temperature:

                                          【技術選定/OSS編】LLMプロダクト開発にLangSmithを使って評価と実験を効率化した話 - Gaudiy Tech Blog
                                        • 900行のコードをノーミスで出力するClaude 3.5 Sonnet (New) やるなお主|平岡憲人(ノーリー)

                                          こんにちは! ノーリーです。ClaudeやChatGPT、Gemini使ってますか? 今朝リリースされた、Claude 3.5 Sonnet (New)のコード生成能力を味う記事です。 では、まったり参りましょう! 1.公式情報Claude 3.5 Sonnetは、コーディング能力において大きな進化を遂げたAIモデルだそうです。このモデルの新機能と改善点は以下の通りです。 強化されたコーディング支援: Claude 3.5 Sonnetは、JavaScriptやPythonなどの様々なプログラミング言語でコード生成する能力に優れています。簡単なコード補完から複雑な問題解決シナリオまで対応可能で、開発プロセスを大幅に効率化できます。 問題解決能力の向上: HumanEvalベンチマークで64%の問題を解決する能力を示し、前バージョンのClaude 3 Opusの38%から大幅に向上しました。

                                            900行のコードをノーミスで出力するClaude 3.5 Sonnet (New) やるなお主|平岡憲人(ノーリー)
                                          • LaTeX と Python で作る 1 ポイントたりとも表示崩れしない最強の帳票印刷ソリューション - Qiita

                                            Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 元ネタ 元ネタはこちらです(以下「Figma と PHP」で略します)。 読んでなるほどと思いました。このように、誰かが苦労したおかげで後続が楽になるので感謝です。何が問題点として生じるのか、どんな解決方法が考えられるのか、が予め判明しているだけでもだいぶ楽になります。 反面、$\LaTeX$ の方が実装は簡易ではないかと思ったので、それを実践してみました。 条件と問題点 Figma と PHP の 44 ページに以下のような条件があります 改めて、満たしたい条件 ミリ単位で細かく帳票をデザインしたい。 帳票デザインの保守性を維持するた

                                              LaTeX と Python で作る 1 ポイントたりとも表示崩れしない最強の帳票印刷ソリューション - Qiita
                                            • 型安全かつシンプルなAgentフレームワーク「PydanticAI」の実装を解剖する - ABEJA Tech Blog

                                              はじめに こちらはABEJAアドベントカレンダー2024 12日目の記事です。 こんにちは、ABEJAでデータサイエンティストをしている坂元です。最近はLLMでアプローチしようとしていたことがよくよく検証してみるとLLMでは難しいことが分かり急遽CVのあらゆるモデルとレガシーな画像処理をこれでもかというくらい詰め込んだパイプラインを実装することになった案件を経験して、LLMでは難しそうなことをLLM以外のアプローチでこなせるだけの引き出しとスキルはDSとしてやはり身に付けておくべきだなと思うなどしています(LLMにやらせようとしていることは大抵難しいことなので切り替えはそこそこ大変)。 とはいうものの、Agentの普及によってより複雑かつ高度な推論も出来るようになってきています。弊社の社内外のプロジェクト状況を見ていても最近では単純なRAG案件は減りつつあり、計画からアクションの実行、結果

                                                型安全かつシンプルなAgentフレームワーク「PydanticAI」の実装を解剖する - ABEJA Tech Blog
                                              • Security best practices when using ALB authentication | Amazon Web Services

                                                Networking & Content Delivery Security best practices when using ALB authentication At AWS, security is the top priority, and we are committed to providing you with the necessary guidance to fortify the security posture of your environment. In 2018, we introduced built-in authentication support for Application Load Balancers (ALBs), enabling secure user authentication as they access applications.

                                                  Security best practices when using ALB authentication | Amazon Web Services
                                                • ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ

                                                  Overview エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。検索とGoが好きです。 エムスリーではChatGPTの可能性にいち早く注目して活用を検討している段階ですが、本格的なデータ投入にはまだ懸念もあり、セキュリティチームと検討を進めている段階です。 そんな中で個人または組織のドキュメントのセマンティック検索と取得を可能にするChatGPTプラグイン「ChatGPT Retrieval Plugin」が登場しました。 github.com 情報検索好きとしては黙っていられず、外部公開用のエムスリーAI・機械学習チームのメンバー紹介ドキュメントを使ってローカルで試してみました。 # 用意したドキュメント 中村弘武は東京都在住で、エムスリーという企業で働いでいます。 エムスリーの検索基盤を主に担当しています。また、書

                                                    ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ
                                                  • Sublime Text 4

                                                    The first stable release of Sublime Text 4 has finally arrived! We've worked hard on providing improvements without losing focus on what makes Sublime Text great. There are some new major features that we hope will significantly improve your workflow and a countless number of minor improvements across the board. A huge thanks goes out to all the beta testers on discord and all the contributors to

                                                      Sublime Text 4
                                                    • Amazon Bedrock(ClaudeV2)でLambdaのコードを生成してみた - Taste of Tech Topics

                                                      こんにちは、最近久々にソロキャンプをしてきました菅野です。 AWS上で、 ChatGPTのようなテキスト生成AIを利用できるようになるサービス、Amazon Bedrockがリリースされました。 今回はBedrockで、LambdaのPythonコードを生成してもらいます。 利用するモデルは、ChatGPTと同レベルの性能を有しているClaudeV2を利用します。詳細はこちら。 Bedrockについて執筆した別記事もあわせてご覧ください。 acro-engineer.hatenablog.com acro-engineer.hatenablog.com S3に保存したCSVファイルの平均を求めるLambda関数を作成する 以下のようなcsvをS3からダウンロードし、一分毎、name毎の平均を返却するLambdaを作成してもらいます。 id,name,value,timestamp 1,da

                                                        Amazon Bedrock(ClaudeV2)でLambdaのコードを生成してみた - Taste of Tech Topics
                                                      • LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog

                                                        はじめに こんにちは。Algomatic LLM STUDIO 機械学習エンジニアの宮脇(@catshun_)です。 Wang+’23 - A Survey on Large Language Model Based Autonomous Agents ChatGPT が発表されてからおよそ 1 年が経ち、AutoGPT, BabyAGI, HuggingGPT, Generative Agents, ChatDev, Mind2Web, Voyager, MetaGPT, Self-Recovery Prompting, OpenCodeInterpreter, AutoAgents などなど、大規模言語モデル (LLM) の抱負な知識および高度な推論能力を活用した LLM エージェント (AIエージェント) が発表されています。 直近ではコード生成からデバッグ、デプロイまで自律的に行う

                                                          LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog
                                                        • イチからつくるLLM(1)|ディープラーニングネイティブ

                                                          LLMのことを知りたいと思ってチュートリアルなどを眺めても結局transformersのAPI紹介で何も分からない。そこで「分からないなら作ればいいじゃない」、というファインマン流な勉強を始めてみました。ゼロから作ろうかと思ったのですが、ちょっと大変そうなので、このシリーズではJAXとequinoxで実装していきます。JAXは自動微分やJIT機能のついたnumpyですが、流石にそのレベルから頑張るのはしんどいので、JAXでニューラルネットワークなどを作りやすくするライブラリーであるequinoxを使います。flaxなどより薄いラッパーで、扱いやすいのが特徴です。 Llama3モデルを色々用意するのは大変なので、今回はLlama3に限定します。LlamaはMetaの開発しているLLMで、同じ構造はSarashinaやLLM-jpといった日本語LLMにも採用されているようです。私が使ったことの

                                                            イチからつくるLLM(1)|ディープラーニングネイティブ
                                                          • Embedding Model を用いたキーフレーズ抽出の検証といろんな Embedding Model の比較 - ABEJA Tech Blog

                                                            こんにちは!ABEJAでデータサイエンティストをしている藤原です。ABEJAアドベントカレンダー2024 の11日目のブログになります! キーフレーズ抽出を簡単に試すという機会がよくあるのですが、簡単に検証する範囲だといつも同じツール・モデルを使っているため、他の方法でも上手くキーフレーズ抽出ができないか?ということで今回いくつか検証してみました。やることとしては、まず Embedding Model を使って日本語の長めの文章からキーフレーズを上手く抽出できるか?というのを検証します。その上で、色々な Embedding Model 間で抽出されるフレーズがどのように違うか?も比較してみます。 目次 目次 はじめに キーワード抽出・キーフレーズ抽出とは? キーフレーズ抽出の手法 1. グラフベース・統計ベース 2. LLM ベースのアプローチ 3. Embedding ベースのアプローチ

                                                              Embedding Model を用いたキーフレーズ抽出の検証といろんな Embedding Model の比較 - ABEJA Tech Blog
                                                            • 第752回 RISC-VのシングルボードコンピューターであるVisionFive 2を使ってみる | gihyo.jp

                                                              今回はStarFive Technology製のRISC-Vシングルボードコンピューター(SBC)であるVisionFive 2にDebianをインストールして、その性能を計測してみましょう。 RISC-VとVisionFive 2 RISC-V(りすく・ふぁいぶ)は今もっとも熱い命令セットアーキテクチャーです。2010年頃に生まれたRISC-Vは、オープンな規格という強みを活かしてどんどんエコシステムを構築し、今では様々な企業がRISC-Vに本格的に手を出す状況になっています。AMD64/Intel 64やARMには性能も普及度合いもまだまだ及びませんが、今の勢いを維持できれば近い将来その状況は変わってくるでしょう。 本連載でも2018年ぐらいから、RISC-Vの記事を何度か取り上げていました。 第505回:「オープン規格の新しい命令セットアーキテクチャRISC-V入門 ツールチェインを

                                                                第752回 RISC-VのシングルボードコンピューターであるVisionFive 2を使ってみる | gihyo.jp
                                                              • ChatGPT および API統合 のためのMCPサーバ構築|npaka

                                                                以下の記事が面白かったので、簡単にまとめました。 ・Building MCP servers for ChatGPT and API integrations 1. はじめに「MCP」は、AIモデルに追加ツールや知識を拡張するための業界標準となりつつあるオープンプロトコルです。「リモートMCPサーバ」は、インターネット経由でモデルを新しいデータソースや機能に接続するために使用できます。 このガイドでは、プライベートデータソース (ベクターストア) からデータを読み取り、API経由でChatGPTで利用する「リモートMCPサーバ」の構築方法について説明します。 【注意】開発者モードベータ版では、完全なMCPコネクタを構築して使用できます。ProおよびPlusユーザーは、「設定 → コネクタ → 詳細設定 → 開発者モード」を有効化してください。 2. データソースの設定「リモートMCPサーバ

                                                                  ChatGPT および API統合 のためのMCPサーバ構築|npaka
                                                                • 複数の AWS アカウントの AWS Security Hub 検出結果を Google BigQuery と Google DataPortal(DataStudio) により可視化した話 - Adwaysエンジニアブログ

                                                                  こんにちは、インフラの天津です。今日は 複数アカウントの AWS Security Hub 検出結果の可視化についてお話したいと思います。 前提 モチベーション AWS Security Hub とは 構想 ツール・サービスの選定 検出結果データのエクスポートについて 可視化用データベース(またはクエリサービス)と可視化ツールについて 構築 全体像 検出結果データエクスポート 検出結果データの S3 -> GCS への転送と BigQuery へのインポート Security Hub からエクスポートしたデータには BigQuery のカラム名に使用できない文字(以下禁則文字)が使用されている件 自動判別で生成されたスキーマでインポートした際に INTEGER 型のカラムに STRING 型のデータが入ってくることがありインポートエラーが発生する件 AWS アカウントデータの S3 ->

                                                                    複数の AWS アカウントの AWS Security Hub 検出結果を Google BigQuery と Google DataPortal(DataStudio) により可視化した話 - Adwaysエンジニアブログ
                                                                  • Cloud Composerにデータマート集計基盤を移行しました - ZOZO TECH BLOG

                                                                    こんにちは、MLデータ部データ基盤ブロックの奥山(@pokoyakazan)です。趣味の範疇ですが、「ぽこやかざん」という名前でラジオ投稿や大喜利の大会に出たり、「下町モルモット」というコンビで週末に漫才をしたりしています。私は普段、全社データ基盤の開発・運用を担当しており、このデータ基盤はGCPのBigQuery上に構築されています。そして、データ基盤内の各テーブルは、大きく分けて以下の2種類に分類されます。 システムDBのデータやログデータなどが、特に加工されることなく連携されている一次テーブル 一次テーブルから必要なデータを使いやすい形に集計したデータマート 本記事では、後者のデータマートを集計するジョブを制御するワークフローエンジンを、DigdagからCloud Composerに移行した事例について紹介します。Cloud Composerとは、GCPにてApache Airflo

                                                                      Cloud Composerにデータマート集計基盤を移行しました - ZOZO TECH BLOG
                                                                    • 生成AI と Wikipedia記事 で 子供向けお仕事提案bot を作ってみよう(Azure OpenAI + RAG) - ENGINEERING BLOG ドコモ開発者ブログ

                                                                      NTT コノキューに出向中の澤山です。 今年の7月にドコモから、コノキューにやってきました。 この記事は、NTTドコモ アドベントカレンダー2023 21日目の記事です。 この記事では、Wikipedia記事 と Azure OpenAI API、既存のモデルの3つを用い、RAG(Retrieval-Augmented Generation)のためのデータ作成と、RAGを活用した子ども向けお仕事提案botを作ります。 (記事の情報は2023/11月のものです。) ※プロンプトに関するTipsをまとめた記事はこちらです。 qompass.nttqonoq.com 生成AI / ChatGPT の大流行 子供のための、生成AI活用方法、ってある? 子供向けお仕事提案チャットボットを作ってみる 全体像 ステップ1 Wikipedia + Azure OpenAI service でお仕事情報をま

                                                                        生成AI と Wikipedia記事 で 子供向けお仕事提案bot を作ってみよう(Azure OpenAI + RAG) - ENGINEERING BLOG ドコモ開発者ブログ
                                                                      • Data Contractに向けたProtocol Buffersの調査 - yasuhisa's blog

                                                                        背景: データ品質を担保するにはデータソースの品質が重要 データソースの品質を担保する手段としてのData Contract Data Contractの表現方法の一つとしてのProtocol Buffers Data ContractとしてProtocol Buffersを使う データの入出力を一箇所に集約、Protocol Buffersで抑えるパターン ストレージのスキーマをProtocol Buffersで抑えるパターン 発展的な話題 & 読書会の案内 参考文献 背景: データ品質を担保するにはデータソースの品質が重要 私はデータエンジニアをしており、DWHやデータマートのデータ品質について考えることが多い。BigQueryなどにデータが取り込まれた後のレイヤリングやテスト、改善に向けたデータ品質の可視化について、以前発表した。 データが取り込まれた後の整理は進んでいるものの、やは

                                                                          Data Contractに向けたProtocol Buffersの調査 - yasuhisa's blog
                                                                        • TransformersのPipelinesで日本語固有表現抽出 - Retrieva TECH BLOG

                                                                          こんにちは。TSUNADE事業部研究チームリサーチャーの坂田です。 本記事では、Hugging Face 社が開発しているTransformersのPipelinesという仕組みを使って日本語の固有表現抽出を行う方法をご紹介します。 Transformersとは? 日本語学習済み言語モデル Pipelines Trainer 固有表現抽出とは? 実際に日本語NERTを試してみる 必要な各種依存ライブラリのインストール 使用するデータ 日本語固有表現抽出データセットでのFine-tuning Pipelinesを使った固有表現抽出 実行例 おわりに 参考 Transformersとは? TransformersはHuggingFace社が公開しているPython用ライブラリで、BERTを始めとするTransformer系の言語モデルを使用する際のデファクトスタンダードになっています。また、最

                                                                            TransformersのPipelinesで日本語固有表現抽出 - Retrieva TECH BLOG
                                                                          • StrandsAgents + Claude インターリーブ思考でDeepResearchを実現する - Taste of Tech Topics

                                                                            こんにちは、YAMALEXの駿です。 最近はStrandsAgentsとStrandsAgents Toolsを組み合わせていろいろなエージェントを作るのにはまっています。 今回は StrandsAgents と Claude 4 のインターリーブ思考 を組み合わせ、マルチエージェントなし で Deep Research 相当の調査レポートを生成する手法を紹介します。 1. はじめに 1.1. DeepResearchについて 1.2. StrandsAgentsとは インターリーブ思考とは 2. 実装 2.1. エージェント 2.2. モデル(インターリーブ思考を有効にする) ポイント 2.3. ツール(Tavily MCP) 2.3.1. Tavily MCPサーバーの特徴 2.3.2. MCP統合の実装 3. 実行 3.1. 思考プロセス 実行結果 4. ポイント 4.1. 複雑な実

                                                                              StrandsAgents + Claude インターリーブ思考でDeepResearchを実現する - Taste of Tech Topics
                                                                            • Structural pattern matching in Python 3.10

                                                                              September 2021 Summary: Python 3.10, which is due out in early October 2021, will include a large new language feature called structural pattern matching. This article is a critical but (hopefully) informative presentation of the feature, with examples based on real-world code. Go to: What it is | Where it shines | My code | Other projects | Problems | Wrapping up At a recent local Python meetup,

                                                                              • AWS Lambdaにblenderを載せてサーバーレスなレンダリングサーバーを作る

                                                                                初めまして、株式会社Berryの齋藤です。 みなさまLambdaはやっておりますでしょうか。 Berryでも3Dデータの自動処理を行う上で数多くのLambda関数を作成、運用しています。 その中で3Dデータのプレビュー生成が必要になったため、blenderによるプレビュー生成を行うことにしました。 通常であればEC2を使い、レンダリングサーバーを立てることが一般的かと思いますが、費用面・運用面を考慮し、Lambdaによるサーバーレスなレンダリングサーバーを作成することにしました。 非常にニッチなユースケースですが、ざっと検索したところ日本語の情報が少なかったので、今回はblenderをLambda上で動かす方法を紹介したいと思います。 サンプルリポジトリ 前提条件 AWS CLIとAWSアカウントが設定済み Dockerインストール済み (x64のCPUで検証しています。armの場合はダウ

                                                                                  AWS Lambdaにblenderを載せてサーバーレスなレンダリングサーバーを作る
                                                                                • CohereLabs/c4ai-command-r-plus · Hugging Face

                                                                                  ","chat_template":[{"name":"default","template":"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You

                                                                                    CohereLabs/c4ai-command-r-plus · Hugging Face