並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 681件

新着順 人気順

BigQueryの検索結果1 - 40 件 / 681件

  • BigQueryでクエリ一撃で29万円溶かしたけど助かった人の顔

    SolanaのPublic DataをBigQueryで取得したかった# えー、お笑いを一席. ブロックチェーンSolanaのデータがGoogle Cloud BigQueryで使えるようになったというニュースをたまたまネット推薦記事でみかけた1. おや, 面白そうだ. ちょっとやってみようかな… BigQueryはさわるのが1年以上つかってないかも, どうやるんだっけ… とりあえずカラムとかサンプルでちょっとデータをみたいよな, こんな感じだっけか? とりあえず動かしてみよう, ポチッとな. … 5秒でレスポンスが帰ってくる. おー、速い. えーっと, あれ課金データ309TB?! いちげきひっさつ、ハサンギロチン2. BigQueryでクエリ一撃5 秒で29万円溶かした人の顔# 話題の画像生成AI, DALL・Eをつかって BigQueryでお金溶かした人の顔を表現してもらった3. あ

    • BigQueryを分かりやすく! ハンズオンで始めるGoogle Cloudのデータ分析サービスと可視化ツールの使い方|ハイクラス転職・求人情報サイト AMBI(アンビ)

      ハイクラス求人TOPIT記事一覧BigQueryを分かりやすく! ハンズオンで始めるGoogle Cloudのデータ分析サービスと可視化ツールの使い方 BigQueryを分かりやすく! ハンズオンで始めるGoogle Cloudのデータ分析サービスと可視化ツールの使い方 Googleの高度な技術を利用できるGoogle Cloudにおいて、BigQueryは大規模データをスケーラブルに分析できるフルマネージドなデータウェアハウスとして提供されています。株式会社タイミーでデータエンジニアを務める土川稔生さんが、初心者向けのハンズオンとともにBigQueryの基本を解説します。 はじめまして。株式会社タイミーでデータエンジニアをしている土川(@tvtg_24)です。 タイミーでは、Google Cloudのデータ分析サービスであるBigQueryを中心に、データ基盤を構築しています。BigQu

        BigQueryを分かりやすく! ハンズオンで始めるGoogle Cloudのデータ分析サービスと可視化ツールの使い方|ハイクラス転職・求人情報サイト AMBI(アンビ)
      • BigQueryへMySQLやPostgreSQLから直接ニアリアルタイムでレプリケーション可能に。「Datastream for BigQuery」登場

        BigQueryへMySQLやPostgreSQLから直接ニアリアルタイムでレプリケーション可能に。「Datastream for BigQuery」登場 Google Cloudは、BigQueryに対してMySQLやPostgreSQL、Oracle Databaseからニアリアルタイムで直接データのレプリケーションを可能にする新サービス「Datastream for BigQuery」をプレビューリリースしました。 オンプレミスやクラウドで稼働するMySQLやPostgreSQL、Oracle DatabaseでのOLTPによるデータ操作が、ETLツールなどを挟むことなくほぼリアルタイムでBigQueryに反映されるため、プライマリとなるデータベースのOLTP処理に負荷をかけることなく並行してBigQueryによる大規模データの分析処理が容易になります。 To stay compet

          BigQueryへMySQLやPostgreSQLから直接ニアリアルタイムでレプリケーション可能に。「Datastream for BigQuery」登場
        • 我が家の BigQuery による台所事情分析 - nownab.log

          弊家では銀行やクレジットカードの明細を BigQuery に取り込んでダッシュボードを作ったりしています。 また、そのために作った BigQuery 向けの Go 製 ETL フレームワークを OSS として公開しました。 本記事ではざっくりどんなもんかを紹介して、どう作るのかを説明します。 Google Cloud Platform Advent Calendar 2020 の 13 日目の記事です。 Google Cloud Japan の Customer Engineer の Advent Calendar もぜひご覧ください。 TL; DR 明細が BigQuery にあると、可視化もできるしアラートも出せるし、まぁなんでもできて便利 銀行明細レベルのデータならほぼ無料で保存、ETL、分析できる ETL フレームワーク bqloader を OSS として公開したから使ってくれよ

            我が家の BigQuery による台所事情分析 - nownab.log
          • [速報]Google、AIが支援してくれる「Duet AI」サービス群を多数展開へ。Google WorkspaceやBigQuery、Looker、Meet、Chatなど。Google Cloud Next '23

            [速報]Google、AIが支援してくれる「Duet AI」サービス群を多数展開へ。Google WorkspaceやBigQuery、Looker、Meet、Chatなど。Google Cloud Next '23 Googleは、8月29日(日本時間の30日未明)から米サンフランシスコで開催中のイベント「Google Cloud Next '23」で、AIが人間の作業を支援してくれる「Duet AI」サービス群を多数発表しました。 同社が提供するオフィススイート製品であるGoogle Workspaceをはじめ、大規模データ分析サービスのBigQuery、オンライン会議サービスのGoogle Meet、チャットサービスのGoogle Chatなど、多数のサービス向けにAIによる支援サービスが展開されます。 オフィスツールから開発、運用、セキュリティ対応まで支援 今回発表されたものとすで

              [速報]Google、AIが支援してくれる「Duet AI」サービス群を多数展開へ。Google WorkspaceやBigQuery、Looker、Meet、Chatなど。Google Cloud Next '23
            • Google CloudがBigQueryでAWS、Azure上のデータを動かさずに分析できる「BigQuery Omni」を発表

              Google Cloudは2020年7月14日(米国時間)、アナリティクスサービス「BigQuery」のマルチクラウド対応を発表した。Amazon Web Services(AWS)やMicrosoft Azure上のデータを動かすことなく、BigQueryによるマルチクラウドのデータ分析ができる。 Google Cloudは同日、AWSの「Amazon S3」に対応したプライベートα版の提供を開始した。Azureへの対応は近い将来(「soon」)に行うという。 BigQuery Omniでは、Google Cloudがマルチクラウド対応を進めるマネージドKubernetesサービス、「Anthos」を活用する。BigQuery OmniとしてAWSやAzureに展開するAnthosクラスタ上で、BigQueryのクエリエンジンである「Dremel」をマネージドサービスとして動かす。その上

                Google CloudがBigQueryでAWS、Azure上のデータを動かさずに分析できる「BigQuery Omni」を発表
              • BigQuery と Snowflake を徹底比較

                最初にBigQueryとSnowflakeの概要と、登場の背景を説明します。 その後、ユーザにとっての使い勝手と、管理者にとっての使い勝手を、ベンダーフリーな立場でそれぞれします。 最後に、BigQueryとSnowflakeどっちが速いのか?といった疑問に対して、アーキテクチャをもとに考察します。

                  BigQuery と Snowflake を徹底比較
                • Google、iPaaS「Application Integration」正式リリース。Salesforceやkintone、BigQuery、MySQLなど多数のサービスをGUIで接続

                  Google、iPaaS「Application Integration」正式リリース。Salesforceやkintone、BigQuery、MySQLなど多数のサービスをGUIで接続 Google Cloudは新サービス「Applicatoin Integration」の正式リリースを発表しました。 Application Integrationは、さまざまなサービスを統合する、いわゆる「iPaas」(Integration PaaS)と呼ばれるサービスです。 Announcing the general availability of Application Integration—part of our Integration Services portfolio to help you connect your apps visually, with no code Get st

                    Google、iPaaS「Application Integration」正式リリース。Salesforceやkintone、BigQuery、MySQLなど多数のサービスをGUIで接続
                  • GoogleがBigQueryを安価に提供できる理由は、Borgによる大規模分散コンテナ環境があるから

                    GoogleがBigQueryを安価に提供できる理由は、Borgによる大規模分散コンテナ環境があるから いまから6年前の2014年、当時ようやくDockerコンテナが世の中に知られるようになってきた頃、Googleはすでに社内のすべてのソフトウェアをコンテナ化しており、毎週20億個ものコンテナをクラウド上で起動していると発表し、多くのエンジニアを驚かせました。 この大規模なコンテナの制御、すなわちオーケストレーションを行っていたのが同社内で「Borg」と呼ばれるソフトウェアです。 そしてKubernetesはこのBorgを基に、Googleがオープンソース化したコンテナオーケストレーションソフトウェアだとされています。 Borgの大規模分散コンテナ基盤でBigQueryが成立する このBorgによる大規模分散コンテナ基盤があるからこそ、BigQueryが安価に提供できるのだと、Google

                      GoogleがBigQueryを安価に提供できる理由は、Borgによる大規模分散コンテナ環境があるから
                    • ZennにみるCloudRunとBigQueryによるアプリケーション構築 / zenn-cloudrun-bigquery-serverless

                      Zennは、クラスメソッドが展開する技術者向けの知識共有プラットフォームです。Cloud Runを中心としたGoogle Cloudのソリューションをメインで使用しており、スケーラブルなWebアプリケーションとなっています。 このセッションでは、「サーバーレスとはなにか」という部分から改めてディス…

                        ZennにみるCloudRunとBigQueryによるアプリケーション構築 / zenn-cloudrun-bigquery-serverless
                      • マルチテナントなWebサービスでデータベースをBigQueryからPostgreSQLに移行してRow Level Securityを導入した - エムスリーテックブログ

                        こんにちは。AI・機械学習チームの高田です。 マルチテナント構成のWebサービスでは、データの分離とセキュリティを確保することが非常に重要です。マルチテナント構成とは、1つのシステムやアプリケーションを複数の顧客(テナント)で共有する設計アプローチを指します。 今回は、当社のあるプロダクトで行った2つの改善施策について紹介します。 BigQueryからPostgreSQLへの移行: より効率的なデータアクセスとコスト削減 Row Level Security(RLS)の導入: データベースレベルでのセキュリティ強化 これらの施策により、セキュリティ向上とコスト削減の両方を実現できた事例を解説していきます。 なぜ移行したのか テナントID分離型を採用 移行前のアーキテクチャ 移行後のアーキテクチャ PostgreSQLテーブル構築のためのバッチ処理の実装 PostgreSQLクエリの最適化

                          マルチテナントなWebサービスでデータベースをBigQueryからPostgreSQLに移行してRow Level Securityを導入した - エムスリーテックブログ
                        • 【プロンプト付き】AIエージェントと社内DBをつなげて、SQL不要なデータ分析基盤を構築する - BigQuery編|maKunugi

                          【プロンプト付き】AIエージェントと社内DBをつなげて、SQL不要なデータ分析基盤を構築する - BigQuery編 本記事を読むとわかること 1. なぜ今「AIでのデータ分析」が注目されているか 2. SQL不要でデータ分析ができるAIを爆速構築する方法 3. 導入時に気をつけたい“誤回答対策”や“運用”のポイント はじめに「社内にある膨大なデータを活用したいけれど、SQLが書けない…」「エンジニアの協力を仰がないとデータ分析が進まない…」 そんな悩みを持つ方、多いのではないでしょうか。 ここ数年のAI技術の進歩はめざましく、いまやプログラミングスキルがなくてもAIを通して扱うハードルが下がっているツールが増えています。特に、自然言語で指示すると裏側でAIがSQLクエリを生成し、必要なデータをサッと引っ張ってきてくれる――そんな仕組みがいま大注目。いわゆる「Text-to-SQL」と呼ば

                            【プロンプト付き】AIエージェントと社内DBをつなげて、SQL不要なデータ分析基盤を構築する - BigQuery編|maKunugi
                          • [速報]BigQueryが非構造化データのサポートを発表。これで構造化データ(RDB)、半構造化データ(JSON)、非構造化データをサポート。Google Cloud Next '22

                            Google Cloudは、開催中のイベント「Google Cloud Next '22」において、大規模データ分析サービスのBigQueryで非構造化データのサポートを発表しました。 BigQueryは今年1月にJSON型データへのネイティブ対応をパブリックプレビューとして公開しています。 参考:BigQueryがJSONにネイティブ対応。SQLでJSONに対するクエリが可能に これでBigQueryは今回の非構造化データのサポートにより、RDBのテーブルに格納された構造化データと、JSONなどによる半構造化データそして非構造化データの3つをすべてサポートする柔軟な大規模データ分析基盤になるわけです。 Google Cloud Storageバケットのテーブル形表現 BigQueryの非構造化データサポートはObjectテーブルによって実現され、画像や動画、音声、テキストなどのデータが扱

                              [速報]BigQueryが非構造化データのサポートを発表。これで構造化データ(RDB)、半構造化データ(JSON)、非構造化データをサポート。Google Cloud Next '22
                            • BigQueryのセキュリティ対策手順

                              風音屋では、データエンジニア、データアナリスト、データコンサルタントを募集しています。 書籍執筆者やOSSコントリビューターなど、業界を代表する20名以上のアドバイザーと一緒にベストプラクティスを追求できる環境です。 ぜひカジュアルトークをお申し込みください。 風音屋アドバイザーの山田雄(@nii_yan)です。 データ活用においてセキュリティ対策が最重要トピックであることは言うまでもありません。 風音屋でBigQueryの導入支援を行うにあたって、どのようなセキュリティ対策を行っているのかをご紹介します。 この記事の全体像 この記事は2つのパートに分かれています。 最初に、BigQuery導入プロジェクトを始めるにあたって、セキュリティ観点でどのようなコミュニケーションが必要になるかを説明します。 次に、一般的な情報セキュリティ対策である「抑止」「予防」「検知」「回復」の4つの観点にもと

                                BigQueryのセキュリティ対策手順
                              • ZOZOTOWNの事業を支えるBigQueryの話 / BigQuery behind ZOZOTOWN

                                全部見せます! BigQueryのコスト削減の手法とその効果 / BigQuery Cost Reduction Methods

                                  ZOZOTOWNの事業を支えるBigQueryの話 / BigQuery behind ZOZOTOWN
                                • Athena+Embulk+BigQueryによるアプリケーションログの分析環境構築

                                  はじめにこんにちは、Finatextで証券プラットフォーム(Brokerage as a Service、以下BaaS)の開発に携わっている石橋(@bashi0501)です。過去のFinatextテックブログではTerraform、CDKとIaCをテーマにした記事しか書いたことがなかったのですが、今回はログの分析活用をテーマとします。 概要弊社の証券事業ではECSによるワークロードを組んでいます。本テーマのアプリケーションログについては標準出力したものをawslogsログドライバーが回収してCloudWatch Logsに送信しています。 ログの検索という観点ではCloudWatch Logs Insightsというサービスでかなりリッチにフィルターや集計を行うことができるのですが、ログデータを元にしたユーザーのファネル分析や業務改善(後述します)に活かしていきたいという意図があるため、マ

                                    Athena+Embulk+BigQueryによるアプリケーションログの分析環境構築
                                  • BigQueryによる最大内積検索の実装

                                    はじめに 機械学習エンジニアの本田志温です。最近担当した類似アイテム推薦の案件で、BigQueryを使って最大内積検索(MIPS; maximum inner-product search)1 を実装したので、その方法と高速化のテクニックを紹介します。 類似アイテム推薦は「多数のアイテム候補から、クエリとなるアイテムに最も類似したK件を抽出する」というタスクなので、MIPSないし近傍探索の枠組みで解くことが一般的です。 一定の規模を持つサービスでMIPSを実装しようとすると、アイテム数×特徴量次元の行列が何かと厄介です2。第一に、MIPSを素朴な行列積で実装すると、時間・空間計算量がアイテム数の2乗でかかってきます。典型的には空間計算量の方がボトルネックになりやすく、RAMの制約に収めるための工夫が必要になるでしょう。第二に、アイテム数が膨大な場合、特徴量マートから全アイテムの特徴量を転送

                                      BigQueryによる最大内積検索の実装
                                    • Google Apps Script× BigQuery × Googleスプレッドシート × データポータルで簡易CRMを作ってみた - BASEプロダクトチームブログ

                                      こんにちは!! BASE BANK 株式会社 Dev Division にてSoftware Developerをしている永野(@glassmonkey)です。 普段はGo/Python/PHPを主に生業に開発・運用から何でもござれの精神でフルサイクルエンジニアをしています。 現在、自分たちのプロダクトであるYELL BANKの分析基盤を構築しています。 その際に、BigQueryで扱っているデータをGoogle App Script(以下GAS)、Googleスプレッドシートとデータポータルで簡易CRMをビジネスサイドのメンバーである猪瀬 (@Masahiro_Inose)と協力して作ったのでそのご紹介です。 いざ実施してみるとハマってる点もそこそこ多く、意外とGASやBigQueryの連携している情報が少なかったので、誰かの助けになれば幸いです。 thebase.in 簡易CRMツール

                                        Google Apps Script× BigQuery × Googleスプレッドシート × データポータルで簡易CRMを作ってみた - BASEプロダクトチームブログ
                                      • 【速報】 BigQuery の料金体系が変更されます | DevelopersIO

                                        ウィスキー、シガー、パイプをこよなく愛する大栗です。 先程開催されたGoogle Data Cloud & AI Summitにて、BigQuery の料金体系の変更が発表されましたので、レポートします。 Introduction to BigQuery editions Dataset storage billing models BigQuery editions BigQuery で Standard、Enterprise、Enterprise Plus という3種類の料金階層が発表されました。これらのエディションは個々のワークロードの必要性に基づいて適切な価格性能比を組み合わせられます。 BigQuery editions は、コンピュート キャパシティのオートスケーリングと、compressed storage(Preview 時には physical storage と呼ばれて

                                          【速報】 BigQuery の料金体系が変更されます | DevelopersIO
                                        • BigQueryの新発表を解説(Google Cloud Next '25速報) - G-gen Tech Blog

                                          G-gen の杉村です。当記事では、Google Cloud Next '25 で発表された BigQuery の新機能について紹介します。 概要 BigQuery と AI の統合 全体像 BigQuery data preparation データセットレベルのインサイト(BigQuery データキャンバス) BigQuery pipelines にデータエンジニアリングエージェントが組み込み Colab Notebook にデータサイエンスエージェントが組み込み BigQuery AI query engine BigQuery DataFrames におけるコード支援 Looker の会話型分析 SQL 移行アシスト データガバナンス Dataplex Catalog が BigQuery universal catalog に改名 Automated metadata curati

                                            BigQueryの新発表を解説(Google Cloud Next '25速報) - G-gen Tech Blog
                                          • BigQuery SQL でレイトレーシング - Qiita

                                            # 以降はコメントなのでこれは valid な pnm フォーマットです。 拡張子 pgm で保存すれば、Windows の場合は IfranView、macOS の場合は Preview.app で表示できます。 これで BigQuery で画像を出力できることが確認できました。 BigQuery によるレイトレーシング というわけで、BigQueryでレイトレーシングをやってみましょう。 実際のSQLコードは以下のようになります。 -- Vec3のドット積 CREATE TEMPORARY FUNCTION DOT (a STRUCT<x FLOAT64, y FLOAT64, z FLOAT64>, b STRUCT<x FLOAT64, y FLOAT64, z FLOAT64>) AS ( a.x*b.x + a.y*b.y + a.z*b.z ) ; -- 線形結合 aP +

                                              BigQuery SQL でレイトレーシング - Qiita
                                            • BigQueryでのデータ追記処理における冪等化の取り組み - ZOZO TECH BLOG

                                              こんにちは、MA基盤チームの田島です。私達のチームではMAIL、LINE、PUSH通知といったユーザへの配信をしています。その中でもマス・セグメント配信という一斉に行う配信では、配信対象者のセグメント抽出にBigQueryを利用しています。また、配信前に必要なデータをBigQueryに連携しデータマートの集計をしたり、配信後には配信実績の登録などの更新処理をしています。 そのような処理を定期的に行っているため、ネットワークの問題やサーバーの不調などにより処理が途中で失敗することがあります。そこで、リトライを容易にするため、すべての処理を冪等にしました。今回その中でも、BigQueryの追記処理に絞ってどのように冪等化したのかについて紹介します。 目次 目次 マス・セグメント配信基盤の紹介 課題 冪等化 BigQuery追記処理に関する冪等化の取り組み 冪等にならないケース INSERT 初

                                                BigQueryでのデータ追記処理における冪等化の取り組み - ZOZO TECH BLOG
                                              • 10TB超えのBigQuery巨大データを高速にS3に同期する - ZOZO TECH BLOG

                                                こんにちは。SRE部MA基盤チームの川津です。 私たちのチームでは今年サービスを終了した「IQON」の10TBを超える大規模データをBigQueryからS3へ移行しました。本記事ではデータ移行を行った際に検討したこと、実際にどのようにデータ移行を行ったかを紹介します。 データ移行の経緯 IQONは2020年4月6日をもってサービスを終了しました。そのIQONではデータ分析にBigQueryを利用していましたが、Amazon Web Services(AWS)上にもIQONに関するリソースが存在します。そのため、IQONはGCPとAWSの2つのクラウドで運用していました。 しかし、サービス終了に伴いGCP・AWSどちらかにリソースを統一する必要が出てきました。統一する意図としては、終了したサービスが利用する取引先を減らし、請求対応などの事務的なコストを減らしたい意図がありました。そのためGC

                                                  10TB超えのBigQuery巨大データを高速にS3に同期する - ZOZO TECH BLOG
                                                • ありがとうRedshift よろしくBigQuery - freee Developers Hub

                                                  ナカミチといいます。freeeのデータ基盤でエンジニア業に勤しむ日々です。 今回は長年freeeの分析環境を支えてくれたRedshiftをBigQueryに移行したお話。 なお技術的な詳細までは触れず、移行プロジェクト全体に関して記述しています。 (Techieな記事を期待した方スミマセンmm) 移行の規模はどんなもんか ボリューム的にはざっと下記の通りです。 テーブル数: 約2,000テーブル データ量: 約180TB(snappy) クエリ数: 約500件 移行期間: 約1年4ヶ月(準備期間含む) そもそもなんで移行したの? 大別すると移行を決めた理由は3つほど。 パフォーマンス向上が見込めた 手段を多様化したい エンジニアリソースの最適化 以下にそれぞれ細かく記述します。 1. パフォーマンス向上が見込めた SQLによりますが、それまで使っていたRedshift環境と比べて平均5〜6

                                                    ありがとうRedshift よろしくBigQuery - freee Developers Hub
                                                  • メルカリ社が運用する trocco & BigQuery のデータ分析基盤と経済性 #GoogleCloudDay / 20210526

                                                    Google Cloud Day: Digital ’21 の発表資料です。 https://cloudonair.withgoogle.com/events/platinum_primenumber?talk=sessionvideo -----------------------------…

                                                      メルカリ社が運用する trocco & BigQuery のデータ分析基盤と経済性 #GoogleCloudDay / 20210526
                                                    • オウンドメディア担当者が知っておきたい GA4 × BigQuery 前編(寄稿:小川卓) - はてなビジネスブログ

                                                      株式会社HAPPY ANALYTICSの小川卓(id:ryuka01)です。 今回は、全2回で Google アナリティクス4(以下「GA4」) × BigQuery に関して紹介をしていきます。 第1回は、BigQueryについての基本的なご説明と、GA4連携におけるメリットなどについてご紹介していきます。 GA4 × BigQuery を活用することで、オウンドメディアの分析や効果の可視化に大きく役立つと思いますので、ぜひ参考にしてみてください。 BigQueryとは? 注目される3つの理由とBigQueryの料金体系 GA4と連携するメリット・デメリット 主なメリット GA4のデータを集計前の状態で恒久的に保存することができる GA4の画面だけでは出しにくい(出せないあるいは出すのに手間がかかる)データを簡単に出せる GA4のデータを他のサービスと連携することが可能になる 上記に伴い

                                                        オウンドメディア担当者が知っておきたい GA4 × BigQuery 前編(寄稿:小川卓) - はてなビジネスブログ
                                                      • BigQueryでの集計結果をノーコードでSlackに定期投稿してみた - ZOZO TECH BLOG

                                                        こんにちは、DATA-SREチームの塩崎です。最近気になるニュースは「ネコがマタタビを好む理由が蚊を避けるためだった1」です。 さて、皆さんはデータ基盤で集計した結果をどのようにして確認していますか。LookerやPower BIなどのBIツールを使って綺麗なダッシュボードを作成している方も多いかと思います。しかし、全員が毎日確認すべき数値はSlackなどの全員が日常的に目にする場所へ掲げたいです。本記事ではBigQueryとSlackを連携させる機能をノーコードで作成する方法を紹介します。 従来手法 BigQueryで集計した結果をSlackに通知するためにはGoogle Apps Script(以下、GAS)を用いるやり方が現在では主流です。GASの文法はJavaScriptとほぼ同じであり、普段分析をメインで担当している人たちには馴染みの薄い言語です。また、Cloud Functio

                                                          BigQueryでの集計結果をノーコードでSlackに定期投稿してみた - ZOZO TECH BLOG
                                                        • セキュアなBigQueryの運用方法

                                                          JulyTechFesta2021 登壇資料 https://techfesta.connpass.com/event/213069/ IAM,VPC Service Controls, Logging, 承認済みviewなどBigQuery周りのセキュリティサービスはいくつもあります。セキュリ…

                                                            セキュアなBigQueryの運用方法
                                                          • 毎月約500万本のクエリが投げられる BigQuery の運用とデータマネジメント / BigQuery and Data Management

                                                            毎月約500万本のクエリが投げられる BigQuery の運用とデータマネジメント / BigQuery and Data Management

                                                              毎月約500万本のクエリが投げられる BigQuery の運用とデータマネジメント / BigQuery and Data Management
                                                            • NTTドコモ、データ分析基盤にBigQueryを導入、クエリーの約7割をRedshiftからBigQueryに移行 | IT Leaders

                                                              IT Leaders トップ > テクノロジー一覧 > BI/BA/DWH > 事例ニュース > NTTドコモ、データ分析基盤にBigQueryを導入、クエリーの約7割をRedshiftからBigQueryに移行 BI/BA/DWH BI/BA/DWH記事一覧へ [事例ニュース] NTTドコモ、データ分析基盤にBigQueryを導入、クエリーの約7割をRedshiftからBigQueryに移行 2021年9月7日(火)日川 佳三(IT Leaders編集部) リスト NTTドコモが自社のデータ分析基盤に「Google BigQuery」を導入した。オンプレミスとAWS(Amazon Web Services)で構成していた既存のデータ分析基盤にBigQueryを追加し、2021年7月から本格稼働を開始している。現在、高い処理性能を要求するユースケースなどユーザークエリーの6~7割をBigQ

                                                                NTTドコモ、データ分析基盤にBigQueryを導入、クエリーの約7割をRedshiftからBigQueryに移行 | IT Leaders
                                                              • BigQueryのアンチパターン認識ツールで独自のSQLリンターを開発しました - ZOZO TECH BLOG

                                                                こんにちは、株式会社ZOZOで25卒の内定者アルバイトをしている村井です。この記事では業務で取り組んでいる、BigQueryで使うSQLのリンターの作成方法について紹介します。 目次 目次 課題と解決策 課題 解決策 BigQueryのアンチパターン認識ツール ミニマムな使い方 日本語がSQL内に含まれている際の問題 アンチパターンを定義する リンターとしてBigQueryのアンチパターン認識ツールを使用する際に生じる課題と解決策 構成 APIサーバ化 Chrome拡張 動作例 まとめ 課題と解決策 課題 社内では様々なチームがSQLを書いており、動作はするものの良くない書き方をしている場合があります。そういった構文を検知して、前もって修正する必要があります。 解決策 BigQueryのコンソールで入力されたSQLの不正構文を検知、修正案を提示できるようにしました。 BigQueryのアン

                                                                  BigQueryのアンチパターン認識ツールで独自のSQLリンターを開発しました - ZOZO TECH BLOG
                                                                • BigQueryでSaaSのjsonデータを処理するSQLサンプル集 - 下町柚子黄昏記 by @yuzutas0

                                                                  この記事の概要 SaaSのデータをBigQueryに統合することで業務改善を促進できる。 しかし、SaaSのデータの中身を見ると、BigQueryの関数では対応しにくい形式になっていることがある。 そこで、本稿では「こういうデータ形式だったらこういうSQLを書く」というサンプル集を掲載する。 目次 この記事の概要 目次 宣伝 実現したいこと SaaSデータの処理方法 SQLサンプル1: 純粋な配列だけのケース SQLサンプル2: 配列内にハッシュマップがあるケース SQLサンプル3: 配列宣言ナシでカンマ区切りのハッシュマップが突如始まるケース SQLサンプル4: 配列とハッシュが入り乱れるケース SQLサンプル5: JSONの中に親子構造があるケース SQLサンプル6: Objectを定義したくなるケース 最強のJSONパースの関数は作れるか jsonデータの処理をどこで行うか 最後に

                                                                    BigQueryでSaaSのjsonデータを処理するSQLサンプル集 - 下町柚子黄昏記 by @yuzutas0
                                                                  • 商品数の増加を見据えて商品情報作成処理をPythonからBigQueryに移行した話 | SQLによるバッチ処理で工夫した3つのポイント - MonotaRO Tech Blog

                                                                    こんにちは、EC基盤グループ 商品情報基盤チームの江村です。今回は私が所属している商品情報基盤チームで構築、運用を行っているシステムについてお話します。 モノタロウでは以前から記事になっていますが、検索システムの移行を行っており、現在商品検索ページの裏側の検索システムのSolrからElasticsearchへの切り替え*1が完了しました。 私が所属している商品情報基盤チームではElasticsearch、Spannerに入れるための商品情報の作成とSpannerおよび、Spannerからデータを取得するAPIの運用を行っています。今回はその中でもElasticsearch、SpannerのためのBigQueryでの商品情報作成処理について取り上げます。(詳しい検索部分の構成については以前の記事を参照ください) システム移行の背景 移行による設計ポイント 「MySQL + Python」の処

                                                                      商品数の増加を見据えて商品情報作成処理をPythonからBigQueryに移行した話 | SQLによるバッチ処理で工夫した3つのポイント - MonotaRO Tech Blog
                                                                    • BigQueryでJSON文字列を攻略する関数たち - ドワンゴ教育サービス開発者ブログ

                                                                      はじめに ドワンゴ教育事業でデータアナリストとして働いている小林です。 ドワンゴ教育事業におけるデータアナリストは企画開発組織の一員としてKPI可視化やレポーティングなどをメイン業務としています。個人的には新たなサービスが生まれる瞬間のお仕事が一番好きで、「何の指標をみていくのか」「どんなデータが流れてくるのか」など少し上流の工程からデータの取り扱いを検討するとともに、既存のダッシュボードをバージョンアップする良い機会にしたり、新たなステークホルダーに対して良いデータ分析の提供を考えたりと、楽しい日々が続きます。 私たちドワンゴ教育事業では大学開学やR高の開校など大きなサービスリリースが予定されていますので、サービス環境の変化を楽しみながらやりがいをポジティブなパワーに変えていきたいと思っています! 課題について(導入に代えて) 昨今、分析対象としてJSON文字列を取り扱うことが増えてきま

                                                                        BigQueryでJSON文字列を攻略する関数たち - ドワンゴ教育サービス開発者ブログ
                                                                      • Amazon AuroraのデータをリアルタイムにGoogle BigQueryに連携してみた / Realtime data linkage from Amazon Aurora to Google BigQuery

                                                                        Amazon AuroraのデータをリアルタイムにGoogle BigQueryに連携してみた / Realtime data linkage from Amazon Aurora to Google BigQuery

                                                                          Amazon AuroraのデータをリアルタイムにGoogle BigQueryに連携してみた / Realtime data linkage from Amazon Aurora to Google BigQuery
                                                                        • LLMを活用した商品検索タグ自動生成とRecall改善の取り組み(BigQuery × Gemini) - 10X Product Blog

                                                                          はじめに 課題:情報不足による検索ヒット率の低さ 施策:LLMによる検索タグの自動生成と活用 なぜタグ生成か? 設計 JANコード単位での生成と管理 タグデータの更新について タグ生成の品質とリスク プロジェクトの進め方 1. PoC:タグ自動生成の実現可能性と品質検証 2. インデキシングの実装 3. 商品検索ロジックの評価とプロンプトチューニング 4. 検索ロジックの修正と本番リリース 5. 本番リリース後の効果測定 おわりに はじめに こんにちは、10Xで検索推薦の機能・基盤の開発運用を担当している安達(id:kotaroooo0)です。 10Xでは小売チェーン向けECプラットフォームStailerにおいて、商品検索機能ではElasticsearchを利用しており、主にテキストマッチングによって検索を実現しています。 今回、LLMを活用して商品検索タグ(以下、タグ)を自動生成し、検索

                                                                            LLMを活用した商品検索タグ自動生成とRecall改善の取り組み(BigQuery × Gemini) - 10X Product Blog
                                                                          • BigQueryとGemini 1.5 Proによるラーメン店クチコミの定量分析 - G-gen Tech Blog

                                                                            G-gen の神谷です。本記事では、Google Maps API から取得したラーメン店のクチコミデータに対する定量分析手法をご紹介します。 従来の BigQuery による感情分析の有用性を踏まえつつ、Gemini 1.5 Pro の導入によって可能となった、より柔軟なデータの構造化や特定タスクの実行方法を解説します。 分析の背景と目的 可視化イメージ 分析の流れとアーキテクチャ クチコミデータ取得と BigQuery への保存 API キーの取得 データ取得のサンプルコード クチコミ数の制限と緩和策 料金 感情分析とデータパイプライン Dataform の利点 Dataform を使った感情分析のパイプライン定義例 感情分析の結果解釈 ML.GENERATE_TEXT(Gemini 1.5 Pro) 関数を使用した高度な分析 ユースケースに応じた独自の評価観点によるクチコミの定量化

                                                                              BigQueryとGemini 1.5 Proによるラーメン店クチコミの定量分析 - G-gen Tech Blog
                                                                            • BigQueryで時を遡って過去のテーブルを再構成する - ZOZO TECH BLOG

                                                                              はじめに こんにちは、データシステム部データ基盤ブロックSREの纐纈です。 本記事では、過去に遡ってBigQueryのデータを参照する方法(以下、タイムトラベルと呼びます)をご紹介します。また、この機能はBigQueryが提供している、変更または削除されたデータにアクセスするタイムトラベルとは異なることをご了承ください。 開発背景 この機能は過去データを日次スナップショットより細かい粒度で見たい、また障害対応時に障害発生前などピンポイントで時間指定して参照したいという要望を受け、開発することになりました。 さらに、BigQueryからこの機能を作るのに役立ちそうなテーブル関数という機能がリリースされたのもきっかけとなりました。 cloud.google.com テーブル関数とは、事前にパラメータを使って定義したクエリをエイリアスのようにテーブルとして保存して、そのテーブルに対して関数を実行

                                                                                BigQueryで時を遡って過去のテーブルを再構成する - ZOZO TECH BLOG
                                                                              • BigQuery縦持ちデータを動的に横持ちデータにする方法 - ドワンゴ教育サービス開発者ブログ

                                                                                はじめに ドワンゴ教育事業でデータアナリストとして働いている小林です。 一般的にデータアナリストはデータの収集・分析を通して組織の意思決定を支援する役割を期待されることが多く、ドワンゴ教育事業における私のミッションもKPI動向の可視化やダッシュボード / レポートの作成・提供を通してデータドリブンな組織に貢献するところにあります。 私たち教育事業には施策を実行する企画者やビジネス上の意思決定者だけでなく、サービスを活用して教育の現場に立っている方々、サービスに展開している教材を制作しているチームなど多様な方面からデータ収集・分析の需要があります。それだけにやりがいも大きく楽しい日々を過ごしています。 課題について(導入に代えて) クエリを書いて、結果を分析して、資料にまとめて、展開して、共有して・・・みたいな仕事をしているとSQLで抽出した縦持ちのデータを横持ちに作り変えたいことがよくあり

                                                                                  BigQuery縦持ちデータを動的に横持ちデータにする方法 - ドワンゴ教育サービス開発者ブログ
                                                                                • BigQuery Scriptingの便利な使い方をまとめてみた - yasuhisa's blog

                                                                                  背景 & Disclaimer 自分自身はこれまでBigQuery Scriptingをほぼ使っていませんでした BigQuery自体は3年くらいの利用歴 SQL単発で済ませるのが苦しそうな場合は、Pythonなどのプログラミング言語 + ワークフローエンジンの組み合わせで戦っており、自分としては特に困っていなかった 社内で他の方が使うケースをぼちぼち見ることがある 自分は困っていなくても、社内のBigQueryユーザーでBigQuery Scriptingを使っていて困っている人がそれなりにいる 著者はそれなりのBigQueryユーザーがいる企業のデータ基盤の人間です さすがに「使ったことないので、分からないですねー」で済ませるわけにはいかなくなってきた そもそもどんなユースケースで便利なのかすらも分かっていない状態なので、便利そうに思える場合をまとめてみることにしました というわけで、

                                                                                    BigQuery Scriptingの便利な使い方をまとめてみた - yasuhisa's blog