タグ

blogとSIFTに関するshirasyのブックマーク (3)

  • bayonを使って画像からbag-of-keypointsを求める - のんびり読書日記

    クラスタリングツールbayonとOpenCVを使って、画像からbag-of-keypointsを特徴量として抽出する手順について書きたいと思います。bag-of-keypointsは自然言語処理でよく使用されるbag-of-words(文章を単語の集合で表現したもの)と同じようなもので、画像中の局所的な特徴量(keypoint)の集合で画像の特徴を表します。bag-of-wordsと同じ形式ですので言語処理と同じように、bag-of-keypointsデータを使ってクラスタリングツールに適用したり、転置インデックスに載せたりといったことが可能になります。 今回は画像からbag-of-keypointsを取り出し、そのデータを使ってbayonで画像集合をクラスタリングするところまでやってみます。ちなみに画像処理は完全に素人で、この記事もニワカ知識で書いているので、間違っている箇所やもっと効率

    bayonを使って画像からbag-of-keypointsを求める - のんびり読書日記
  • [機械学習] bayon+LSHIKITを使って画像クラスタリング - tsubosakaの日記

    bayonを使って画像からbag-of-keypointsを求める - のんびり読書日記の記事を読んで、クラスタリングを行う際の入力データを作るために文献[1]にある方法が利用できると思って実験してみた。 局所特徴量を持ったデータの取扱い 画像データの分類などを行う際にSIFTのような画像中の特徴点(keypoint)を抽出するということがよく行われる。 例えばSIFTを用いる場合は各keypointは128次元のベクトルとなり、画像ごとにいくつかのkeypointが抽出される。ここで抽出されるkeypointの数は画像ごとに異なる。このため、画像間の類似性を比較するのは困難である。 これに対するアプローチとしては一つは画像中の特徴点同士の全対比較を行う、もしくはマッチングをとるという方法が挙げられるがこれは計算量が非常に大きい。 別の方法としてヒストグラムを利用するという方法がある。これ

    [機械学習] bayon+LSHIKITを使って画像クラスタリング - tsubosakaの日記
  • 3日で作る高速特定物体認識システム (1) 物体認識とは - 人工知能に関する断創録

    情報処理学会の学会誌『情報処理』の2008年9月号(Vol.49, No.9)に「3日で作る高速特定物体認識システム」という特集記事があります。OpenCVを用いた面白そうなプロジェクトなのでレポートにまとめてみようと思います。3日でできるかはわからないけど。 残念ながらこの記事はPDFを無料でダウンロードすることができません(CiNiiでオープンアクセス可能になったみたいです)。なので会員以外で元記事が読みたい人は図書館でコピーする必要があるかも・・・また、2009年9月号の人工知能学会誌にも物体認識の解説「セマンティックギャップを超えて―画像・映像の内容理解に向けてー」があります。こちらも非常に参考になりますが同様にPDFが手に入りません・・・。他にもいくつかわかりやすい総説論文へのリンクを参考文献にあげておきます。 物体認識とは 物体認識(object recognition)は、画

    3日で作る高速特定物体認識システム (1) 物体認識とは - 人工知能に関する断創録
    shirasy
    shirasy 2009/10/19
    【メモ】参考:情報処理学会 学会誌2008/9月号(Vol.49, No.9)「3日で作る高速特定物体認識システム」
  • 1