タグ

programmingとpythonに関するtouhumogのブックマーク (7)

  • なぜPythonはこんなにも遅いのか? | POSTD

    (編注:2020/08/18、いただいたフィードバックをもとに記事を修正いたしました。) Pythonは高い人気を誇り、DevOps、データサイエンス、Web開発、セキュリティの分野で使われています。 しかし、速度に関しては高い評価が全くありません。 JavaとC、C++、C#、Pythonの速度を比べるには、どうしたらいいのでしょう? 答えは、実行するアプリケーションのタイプに大きく左右されます。完璧なベンチマークはありませんが、[手始めに比べる手段](https://algs4.cs.princeton.edu/faq/)としてはThe Computer Language Benchmarks Gameが適しています。 私は10年ほどthe Computer Language Benchmarks Gameを参照していますが、Java、C#、GoJavaScriptC++などの他言

    なぜPythonはこんなにも遅いのか? | POSTD
  • Webアプリケーションフレームワークの作り方 in Python — c-bata.link

    こんにちは、芝田 将 ( @c_bata_ ) です。 この資料はPyCon JP 2016で行った 「基礎から学ぶWebアプリケーションフレームワークの作り方」 の書き起こし資料です。 誤字等があれば、Issue or PRをお待ちしております。 はじめに¶ この資料では200行に満たないシンプルなWebフレームワークの作り方をボトムアップで解説します。 テンプレートエンジンとしてJinja2を使ったりもしますが、基的にはPythonの標準ライブラリのみを使っています。 FlaskやDjango等を使ったWeb開発の経験があり、基的なHTTPの知識があれば読み進められるんじゃないかなと思うのでぜひチャレンジしてみてください。 資料を読み終えた方はBottleやDjango、筆者の公開している Kobin というフレームワークのコードを 読んでみたり、自分でWSGIフレームワークを実

    Webアプリケーションフレームワークの作り方 in Python — c-bata.link
  • Pythonによるデザインパターン5原則 - Qiita

    #参考 @kidach1 さんの投稿をPythonに書き換えてるだけです。 @kidach1 さん、いつもありがとうございます。 https://qiita.com/kidach1/items/4b63de9ad5a97726c50c #概要 改めて基を学ぶ。 参考「Rubyによるデザインパターン第1章」→この投稿はPython #デザインパターンとは プログラミングにおいて繰り返し現れる問題に対する、適切解のパターン。 無駄無く設計されたオブジェクト指向プログラムの実現をサポート。 パターンとしてカタログ化されていることで 車輪の再発明を防ぐ #デザインパターンの根底にある5つの考え 変わるものを変わらないものから分離する プログラムはインターフェイスに対して行う(実装に対して行わない) 継承より集約 委譲、委譲、委譲 必要になるまで作るな(YAGNI) #変わるものを変わらないものか

    Pythonによるデザインパターン5原則 - Qiita
  • データサイエンティストを目指して半年で学んだことまとめ - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 記事では、データサイエンティストを目指して勉強した半年間で学んだこと、気付いたことをまとめます。これからデータサイエンティストを目指して勉強する人の参考になればと思います。 最初の一手 個人的にではありますが、最初はアプローチの理解から始めると思いますが、数式とプログラミングの両方を勉強する方が良いと思います。**数式→プログラミング or プログラミング→数式の順序はどちらでも良いと思いますが、プログラミング(フレームワーク)のみ**はやめた方が良いと思います。出力結果の解釈で苦労することになるので、理論、数式はしっかり理

    データサイエンティストを目指して半年で学んだことまとめ - Qiita
  • Pythonを書き始める前に見るべきTips - Qiita

    Pythonを使ってこの方さまざまな点につまずいたが、ここではそんなトラップを回避して快適なPython Lifeを送っていただくべく、書き始める前に知っておけばよかったというTipsをまとめておく。 Python2系と3系について Pythonには2系と3系があり、3系では後方互換性に影響のある変更が入れられている。つまり、Python3のコードはPython2では動かないことがある(逆もしかり)。 Python3ではPython2における様々な点が改善されており、今から使うなら最新版のPython3で行うのが基だ(下記でも、Python3で改善されるものは明記するようにした)。何より、Python2は2020年1月1日をもってサポートが終了した。よって今からPython2を使う理由はない。未だにPython2を使う者は、小学生にもディスられる。 しかし、世の中にはまだPython3に

    Pythonを書き始める前に見るべきTips - Qiita
  • 100万倍速いプログラムを書く - Qiita

    この記事はなんなの プログラミングを始めたばかりで高速化の大枠が全くわからず意味不明なことをしていた在学時、こんな資料があったら良かったのになあ、と思って書いたもの。 書いて、在学時研究室に押し付けた後紛失したと思われていたものが発掘されたもの。 要約 ライブラリがあるならそれを使う。 ライブラリが無ければ、ボトルネック部分を探してそこだけ高速な言語で書きなおすか、可能なら事前コンパイルする。 最初から全てを Low-Level な言語で書くと大変、でも結果のプログラムは速い。 以下の時間の計測ではインポートにかかる時間は除いています。 使用するもの Python(3系) Numba Scipy Line Profiler Fortran(gfortran) QUADPACK QUADPACK以外の導入方法の説明は色んな所にあるので各自でお願いします。上3つに関しては、個人的にはAnaco

    100万倍速いプログラムを書く - Qiita
  • 金融データのPythonでの扱い方 - 今日も窓辺でプログラム

    はじめに Udacityというネット上のビデオを視聴する形で受講できる講義を提供しているサイトがあります。 Learn the Latest Tech Skills; Advance Your Career | Udacity サイトや講義は英語なのですが、その中で Machine Learning for Tradingという講義を見つけました。 この講義は主に3つのパートに分かれています 金融データをPythonで操作する コンピュータを使った投資 取引に使う機械学習アルゴリズム 1つ目のパートを視聴したので、Pythonの基的な知識の部分で知らなかった点を、実際のデータを操作する中で紹介しようと思います。 2つ目と3つ目はまた後日にでも。。 目次 はじめに 目次 今回使用するデータとJupyter Notebook データの読み込み 移動平均の計算 pandasのrollingを使

    金融データのPythonでの扱い方 - 今日も窓辺でプログラム
  • 1