Accelerate your digital transformation Whether your business is early in its journey or well on its way to digital transformation, Google Cloud can help solve your toughest challenges.

AWS News Blog Amazon SageMaker – Accelerating Machine Learning Machine Learning is a pivotal technology for many startups and enterprises. Despite decades of investment and improvements, the process of developing, training, and maintaining machine learning models has still been cumbersome and ad-hoc. The process of incorporating machine learning into an application often involves a team of experts
Note Doctest Mode The code-examples in the above tutorials are written in a python-console format. If you wish to easily execute these examples in IPython, use: in the IPython-console. You can then simply copy and paste the examples directly into IPython without having to worry about removing the >>> manually.
Lisp Advent Calendar 2016参加記事 ここ数年ディープラーニングの出現をきっかけにAIが再び盛り上がっているので、いよいよLispの復権があるかと思いきや、ないので(泣)、多少なりともLispに興味を持ってもらえるように、LispとAIの関係について私見を述べておこうと思う。Lispといっても色々あるが、この記事では主にCommon Lispの話になる。 Lispというとどうしても過去の記号処理的AIと結びつけられてしまい、機械学習を駆使するような現代のAIでは役に立たないように思われがちなのだが、これは大体誤解である。少なくともCommon Lispは現代的なAI開発に適した特徴を備えている。まず、AI実装のためのプログラミング言語に必要とされる特徴は何なのかを明らかにするために、AIの歴史から考えてみたい。 AIの歴史 初期の記号処理的AI(以降は記号AIと呼ぶ)
このエントリは、はてなエンジニアアドベントカレンダー2016の21日目の記事です。昨日は id:hakobe932さんによる次に何を勉強するかを決めるための作戦でした。 こんにちは、アプリケーションエンジニアのid:syou6162です。このエントリでは、今年の9月から社内で行なっている機械学習勉強会についての概要と、この数ヶ月でやってきた内容について紹介したいと思います。 最新の論文読み会、だけでいいのか? 他社から学ぶ 機械学習の学習データをどうやって効率的に作るか サービスへの事例や技術選定の基準をキーワードにまとめていく ときには最近の機械学習技術の話題にもキャッチアップ まとめ 最新の論文読み会、だけでいいのか? 私は今年の3月まで自然言語処理/機械学習の企業研究者として働いていて、転職して4月からはてなでエンジニアとして働いています。「転職してからあまり論文読めていないなぁー」
本記事では、書籍『Python機械学習プログラミング』を読むために必要な知識、読み方等について説明します。 『Python Machine Learning』が2015年9月に米国などで発売。「機械学習の考え方」と「Pythonプログラミングによる実践」をバランスよく解説していると評価され、米国Amazon.comでベストセラー。その日本語訳はコラムや脚注、付録が追加され、2016年6月に発売されました。ここでは、本書のより効果的な活用法について監訳者が解説します。 『Python機械学習プログラミング』とは 書籍『Python機械学習プログラミング』は、Sebastian Raschka氏によるPythonを用いた機械学習の入門書"Python Machine Learning"の翻訳書です。著者はミシガン州立大学の博士課程で生物統計学(計算生物学)の研究を行っており、scikit-le
[2016/07/04追記] 好評につき80名から100名に増枠しました! DMM.com ラボ、サイバーエージェント、Clouderaの最前線のエンジニアが各自の視点から発表!SparkやPythonを使い、ビッグデータを活用したData Science、機械学習を活かしたプロダクトの活用事例や、ツール、アーキテクチャを知りたい人にお勧めのミートアップを開催決定! 対象 Sparkを使っていて、データを活用したプロダクトを作りたい人 機械学習やデータ分析はしているが、Sparkはまだ使ったことのない人 Pythonを使ってビッグデータの分析・活用がしたい人 などの方々に楽しんでもらえる発表を予定しています。 概要 SparkやPythonを用いてビッグデータ分析を行ったり、機械学習を活かしたプロダクトの開発についいての知見を共有する会です。大量のデータに対してどういうアーキテクチャを用い
先週末、はてな社内の勉強会で構造学習、特に実装が簡単な構造化パーセプトロンについて発表しました。発表資料と説明用にサンプルで書いたPerlの品詞タグ付けのコードへのリンクを張っておきます。 今日からできる構造学習(主に構造化パーセプトロンについて) from syou6162 structured_perceptron/structured_perceptron.pl at master · syou6162/structured_perceptron 「えっ、Perlかよ」という人がいるといけないので、Clojureで構造化パーセプトロンを使った係り受け解析のサンプルコードへのリンクも張っておきます(2種類あります)。PerlもClojureもあれば8割くらいの人はカバーできそうなので、安心ですね。 syou6162/simple_shift_reduce_parsing syou616
Amazon.comはディープラーニングを実現するライブラリ「Amazon DSSTNE」(Deep Scalable Sparse Tensor Network Engineの頭文字、読みはデスティニー)をオープンソースで公開しました。 GitHub - amznlabs/amazon-dsstne: Deep Scalable Sparse Tensor Network Engine (DSSTNE) is an Amazon developed library for building Deep Learning (DL) machine learning (ML) models DSSTNEは本番環境のワークロードに対応したライブラリで、以下の特長があります。 マルチGPUスケール 学習と予測のどちらも、複数のGPUにスケールアウトし、レイヤごとにモデル並列化の方法で(model-
最近(?)ニューラルネット(Neural Network)やらディープラーニング(Deep Learning; 深層学習)やらが流行ってきて、人工知能やらシンギュラリティやら言われるようになって、その中でよく言われるのが「ディープラーニングは人間の脳を模倣してる」とか「特徴量を選ばずに学習できる」とか、そんなことが言われるわけです。 けど、そういったキーワードが一人歩きして、「人工知能は危険だ」論とか、人工知能に対する過剰な期待論がはびこってしまっている気がする。そこで言いたいのが「ディープラーニングは人間の脳を模倣している」と言ってしまうのをやめましょう、という話。 ニューラルネットワークが「人間の脳を模倣」してる話 まず最初に、「ニューラルネットワークが人間の脳を模倣してる」論が、あながち間違ってないよ、ということを話しておきたい。あながち間違ってないんだけど、それでもやめたほうが良い
AWS News Blog Machine Learning, Recommendation Systems, and Data Analysis at Cloud Academy In today’s guest post, Alex Casalboni and Giacomo Marinangeli of Cloud Academy discuss the design and development of their new Inspire system. — Jeff; Our Challenge Mixing technology and content has been our mission at Cloud Academy since the very early days. We are builders and we love technology, but we al
[速報]Google、クラウドで高速にディープラーニングを行う「Cloud Machine Learning」発表、TensorFlowベース。GCP Next 2016 Googleは同社のクラウドに関するイベント「GCP Next 2016」を3月23日、24日の2日間にわたり米サンフランシスコで開催しています。 初日の基調講演で、最後の話題は機械学習(Machine Learning)でした。Googleはクラウドサービスの1つとして機械学習機能にも注力することを表明しています。Google Senior FellowのJeff Dean氏は、機械学習はコンピュータの歴史のなかで最も重要な出来事の1つだと説明。 Googleは2012年以来機械学習をさまざまなサービスに利用し、いま社内ではより使いやすくなった第二世代を機械学習を利用しているとのこと。 トレーニング済みの機械学習サービ
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? これ書くだけで土日2日間まるまる潰れてしまった。 学んだ内容に沿っているので、順に読み進めるに従ってコードの話になっていきます。 Tensorflow触ってみたい/みたけど、いろいろまだ理解できてない!という方向けに書きました。 ※2018年10月4日追記 大分古い記事なのでリンク切れや公式ドキュメントが大分変更されている可能性が高いです。 この記事のTensorflowは ver0.4~0.7くらいだった気がするので ver2.0~となりそうな現在は文章の大半が何を参考にしているのか分からないかもしれません。 1: Deep Lear
"We cannot go against the trend. I think machines will beat humans someday. " "If I get defeated it might be negative for go and this is inevitable in this modern life. However, it will not destroy the value of go itself." (「私たちは時代の流れに逆らうことは出来ません。いつか機械は人間を打ち負かすでしょう」 「もし私が負けたら囲碁にとってはネガティブなことですが、これは現代社会では避けられないことです。 しかし、その敗北は囲碁自身の価値を損なうことはないでしょう」イ・セドル) Human-AI showdown begins 1 p.m. 2016年3月9日、"Alph
2016/1/16 "第50回 データマイニング+WEB @東京( #TokyoWebmining 50th ) ー機械学習 実活用 祭りー" を開催しました。 第50回 データマイニング+WEB @東京( #TokyoWebmining 50th ) ー機械学習 方法論 祭りーEventbrite Google グループ 会場提供し運営を手伝って下さった FreakOut のみなさん、どうもありがとうございました。素敵なトークを提供してくれた講師メンバーに感謝します。多くの方々の参加を嬉しく思っています。 参加者ID・バックグラウンド一覧 参加者セキココ:第50回 データマイニング+WEB @東京 セキココ (作成してくれた [Twitter:@komiya_atsushi] さんに感謝) 以下、全講師資料、関連資料、ツイートまとめです。 AGENDA: ■Opening Talk: O
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く