タグ

ブックマーク / qiita.com/icoxfog417 (12)

  • 「君は今日から人工知能開発部門のリーダーだ!」と言われた時の処方箋 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? いわゆる人工知能技術が巷をにぎわす昨今、人工知能を研究する部署/団体を設立するのがトレンドになっています。もちろん、部署の設立にはそれをマネジメントする人間が必要です。「その時」は突然やってきます。 「わが社でも人工知能技術を研究しビジネスに役立てるべく、新しい部門を設立することになった」 「はい」 「ひいては、君にその部門のマネジメントを任せたい」 「!?」 「将来的には100人規模にし3億円規模のビジネスにしたいと思っている(※)。まずは中期計画を作成してくれ」 「そ、それは・・・」 「部門設立のプレスリリースは来月発行される。よろ

    「君は今日から人工知能開発部門のリーダーだ!」と言われた時の処方箋 - Qiita
  • ディープラーニングの判断根拠を理解する手法 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ディープラーニングは特定分野で非常に高い精度が出せることもあり、その応用範囲はどんどん広がっています。 しかし、そんなディープラーニングにも弱点はあります。その中でも大きい問題点が、「何を根拠に判断しているかよくわからない」ということです。 ディープラーニングは、学習の過程でデータ内の特徴それ自体を学習するのが得意という特性があります。これにより「人が特徴を抽出する必要がない」と言われたりもしますが、逆に言えばどんな特徴を抽出するかはネットワーク任せということです。抽出された特徴はその名の通りディープなネットワークの中の重みに潜在してお

    ディープラーニングの判断根拠を理解する手法 - Qiita
  • GitHub APIから学ぶ次世代のAPI実装方式GraphQL - Qiita

    最近公開されたGitHubAPIは、GraphQLという形式に対応しました。今後はこちらが主流になっていくようで、既存のREST APIからGraphQLへのマイグレーションガイドも提供されています。 今回は、このGraphQLについて、実際にGitHubAPIを叩きながらその仕組みを解説していきたいと思います。 GraphQLとは 歴史 GraphQLは、Facebookの中で2012年ごろから使われ始めたそうです。その後2015年のReact.js Confで紹介されたところ話題となり、同年"technical preview"のステータスでオープンソースとして公開されました。その後仕様が詰められ、2016年9月に晴れて"preview"を脱し公式実装として公開されました。これと同じタイミングで、GitHubからGraphQLバージョンのAPIが公開されています。 このあたりの経緯

    GitHub APIから学ぶ次世代のAPI実装方式GraphQL - Qiita
    TokyoIncidents
    TokyoIncidents 2017/06/28
    サーバサイドの事例、実装をあまり聞かないのよね
  • 機械学習のためのOpenCV入門 - Qiita

    機械学習を行うために、画像から特定の物体(領域)だけ切り出して認識したり学習データを作りたい、ということがよくあると思います。 稿では非常に多くの機能を持つOpenCVの中から、そうした機械学習のために利用する機能にフォーカスしてその利用方法を紹介していきたいと思います。具体的には、下記のモジュールを中心に扱います。 CVPR 2015 Tutorials 基的な切り出しの手順は以下のようになります。以下では、このプロセスに則り解説を行っていこうと思います。 前処理: 物体検出が行いやすいように、画像の前処理を行います 物体検出: 物体の検出を行い、画像から切り出します 輪郭検出: 画像上の領域(輪郭)を認識することで、物体を検出します 物体認識: OpenCVの学習済みモデルを利用して対象の物体を認識し、検出を行います 機械学習の準備: 切り出した画像を用い、予測や学習を行うための準

    機械学習のためのOpenCV入門 - Qiita
  • 現場を改善したいあなたに送る、くじけない業務改善のメソッド - Qiita

    現場を改善するというのは難しい。そして徒労である。 こちらの記事を読んで、当時のことを幾ばくか思い出すきっかけになった。 業務改善を現場に求める狂気 私も実際に現場の改善に取り組んだことがある。ただ、その中には失敗だけでなく成功もある。というか、多くの失敗から成功させるために何が必要なのかを得たという感じで、成功したものは後半に行ったものになる。成功といえるものの中で大きめなものは、以下の二つになる。 Gitによるバージョン管理と、タスク管理ツールの導入(当時書いたもの) 開発にJavaScriptフレームワークを導入(当時の検証結果をまとめた記事) 私が身につけた手法が、改善を目指す誰かがくじけないために有用なこともあるかもしれないので、ここで得られた知見を紹介しておこうかと思います。つまりこれは、ポエムです。 前提: 改善できないのは特別なことではない 何かを改善したいと行動してみる。

    現場を改善したいあなたに送る、くじけない業務改善のメソッド - Qiita
  • Convolutional Neural Networkを実装する - Qiita

    Deep Learning系のライブラリを試すのが流行っていますが、Exampleを動かすのはいいとしても、いざ実際のケースで使おうとするとうまくいかないことがよくあります。 なんとか動かしてみたけれど精度が出ない、データの加工の仕方が悪いのか、モデルのパラメーターが悪いのか、原因がぜんぜんわからん・・・という事態を乗り越えるには、やはり仕組みに対する理解が必要になってきます。 そんなわけで、編では画像の用意という一番最初のスタートラインから、Chainerで実装したCNNを学習させるところまで、行うべき手順とその理由を解説していきたいと思います。 前段として理論編を書いていますが、ここではライブラリなどで設定しているパラメーターが、理論編の側とどのようにマッチするのかについても見ていきたいと思います。 なお、今回紹介するノウハウは下記リポジトリにまとめています。画像認識を行う際に役立て

    Convolutional Neural Networkを実装する - Qiita
  • ゼロからDeepまで学ぶ強化学習 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ロボットから自動運転車、はては囲碁・将棋といったゲームまで、昨今多くの「AI」が世間をにぎわせています。 その中のキーワードとして、「強化学習」というものがあります。そうした意味では、数ある機械学習の手法の中で最も注目されている(そして誇張されている・・・)手法ともいえるかもしれません。 今回はその強化学習という手法について、基礎から最近目覚ましい精度を出しているDeep Q-learning(いわゆるドキュン、DQNです)まで、その発展の流れと仕組みについて解説をしていきたいと思います。 記事の内容をベースに、ハンズオンイベントを開

    ゼロからDeepまで学ぶ強化学習 - Qiita
  • 画像処理の数式を見て石になった時のための、金の針 - Qiita

    $k$は定数で、だいたい0.04~0.06くらいです。Rの値によって以下のように分類できます。 Rが大きい: corner Rが小さい: flat R < 0: edge 図にすると、以下のようになります。 CSE/EE486 Computer Vision I, Lecture 06, Corner Detection, p22 これで手早くcornerを検出できるようになりました。ここで、corner検出についてまとめておきます。 cornerは複数のedgeが集まる箇所と定義できる 変化量をまとめた行列の固有ベクトルからedgeの向き、固有値の大きさから変化量の大きさ(edgeらしさ)がわかる 2つの固有値の値を基に、edge、corner、flatを判定できる 固有値の計算は手間であるため、判定式を利用し計算を簡略化する なお、Harrisはedgeの向きである固有ベクトルを考慮す

    画像処理の数式を見て石になった時のための、金の針 - Qiita
  • TensorFlowを算数で理解する - Qiita

    TensorFlowは主に機械学習、特に多層ニューラルネットワーク(ディープラーニング)を実装するためのライブラリになりますが、その基的な仕組みを理解するのにそうした難しい話は特に必要ありません。 記事では、TensorFlowの仕組みを、算数程度の簡単な計算をベースに紐解いていきたいと思います。 TensorFlowの特徴 初めに、TensorFlowの特徴についてまとめておきたいと思います。 TensorFlowは、その名前の通りTensor(多次元配列、行列などに相当)のFlow(計算処理)を記述するためのツールです。その特徴としては、以下のような点が挙げられます。 スケーラビリティ PC、サーバー、はてはモバイル端末まで、各マシンのリソースに応じてスケールする。つまり、低スペックなものでもそれなりに動くし、GPUを積んだハイスペックなサーバーであればそのリソースをフルに活用した

    TensorFlowを算数で理解する - Qiita
  • はじめるDeep learning - Qiita

    そうだ、Deep learningをやろう。そんなあなたへ送る解説記事です。 そう言いながらも私自身勉強しながら書いているので誤記や勘違いなどがあるかもしれません。もし見つけたらご連絡ください。 Deep learningとは こちらのスライドがとてもよくまとまっています。 Deep learning つまるところ、Deep learningの特徴は「特徴の抽出までやってくれる」という点に尽きると思います。 例えば相撲取りを判定するモデルを構築するとしたら、普通は「腰回りサイズ」「マゲの有無」「和装か否か」といった特徴を定義して、それを元にモデルを構築することになります。ちょうど関数の引数を決めるようなイメージです。 ところが、Deep learningではこの特徴抽出もモデルにやらせてしまいます。というか、そのために多層、つまりDeepになっています。 具体的には頭のあたりの特徴、腰のあ

    はじめるDeep learning - Qiita
  • React.js 実戦投入への道 - Qiita

    最近話題のReact.jsですが、実戦投入に当たっては結構重たい選択を迫られることになります。 ざっくり言えば、テンプレートエンジンを捨ててReactしますか?それともReactあきらめますか?という選択です。 記事ではReactの基思想とこうした選択肢が生まれてしまう背景を述べるとともに、後半では「どちらもあきらめない」という(若干シミュレーションRPGあるある感のある)第三の方策について案を提示します。 Reactの基 最初に、Reactの基的な仕組みについてまとめておきます。 Reactは公式ドキュメントが非常に充実しているので、始める際はぜひQuick Startのドキュメントに目を通すことをお勧めします。 Getting Started Tutorial Thinking in React 後述しますが、Reactを使ってアプリケーションを作る際の設計方法についての記載が

    React.js 実戦投入への道 - Qiita
  • View First で始める Scala Liftフレームワーク - Qiita

    普通Webサイトを作るというときは画面から作ると思いますが、ことWebアプリケーションとなるとそうではないことが多いのではないでしょうか。 それというのも、Railsをはじめとする昨今のフレームワークでは、画面に至るにはControllerが必要ですしModel定義がないと記述できないこともままあります。 ・・・まず簡単に画面を作らせてくれ。そこからModelの構成や画面遷移を検討したいんだ。 そんな心の声を実現するフレームワーク、それがLiftなのです。 Lift フレームワークの 1 ・ 2 ・ 3 ここでLiftの紹介をしているとそれだけで終わってしまうので、それはこちらを見ていただくとして、ここでは実際にLiftを使ったアプリケーションの作成方法を紹介します。そのStepは以下の通り。 1 初期設定 2 Viewを作る 3 Modelを作る チュートリアル用のコードはこちら。ソース

    View First で始める Scala Liftフレームワーク - Qiita
  • 1