タグ

recommendationとalgorithmに関するaratafujiのブックマーク (4)

  • 大規模データ処理のための行列の低ランク近似 -- SVD から用例ベースの行列分解まで -- - 武蔵野日記

    id:naoya さんのLatent Semantic Indexing の記事に触発されて、ここ1週間ほどちょくちょく見ている行列の近似計算手法について書いてみる。ここでやりたいのは単語-文書行列(どの単語がどの文書に出てきたかの共起行列)や購入者-アイテム行列(どの人がどのを買ったかとか、推薦エンジンで使う行列)、ページ-リンク行列(どのページからどのページにリンクが出ているか、もしくはリンクをもらっているか。PageRank などページのランキングの計算に使う)、といったような行列を計算するとき、大規模行列だと計算量・記憶スペースともに膨大なので、事前にある程度計算しておけるのであれば、できるだけ小さくしておきたい(そして可能ならば精度も上げたい)、という手法である。 行列の圧縮には元の行列を A (m行n列)とすると A = USV^T というように3つに分解することが多いが、も

    大規模データ処理のための行列の低ランク近似 -- SVD から用例ベースの行列分解まで -- - 武蔵野日記
  • GoogleNewsのレコメンドの中身 - UMEko Branding

    先日、全体ゼミで発表したときの内容ですが、ここにまとめときます。。GoogleNewsのレコメンドの中身を追った論文の要約です。少し前の全体ゼミで用いた資料です。ソース:Abhinandan Das,Mayur Datar,Ashutosh Garg,Shyam Rajaram,"Google News Personalization: Scalable OnlineCollaborative Filtering",WWW2007不勉強な個所が多々ありますので、誤っている箇所等ありましたら、是非ご指摘ください。 個人的には、最近のモデルベースの手法の勉強・おさらいという意味で用いているので、GoogleNews独自の拡張なり実装の部分の内容が省かれている場合があります。また、データ構造やMapReduceを用いた計算の仕組みの部分は、ここでは省略しています。。一応、 全体像 ・LSH(Lo

  • 楽天も情報爆発しています - 武蔵野日記

    楽天テクノロジーカンファレンスには行かれなかったのだが、大規模分散処理フレームワークの設計、実装が進行中 -- 楽天MapReduce・HadoopはRubyを活用などを読むと、けっこうおもしろそうだったのだな、と分かる。 楽天技術研究所がどういう位置づけなのかは分からないが、こういう基盤技術の開発を支援しているというのは評価していいと思う。(車輪の再発明という気がしないでもないが) 個人的な興味としては楽天が大規模データに対してどういうことをしているかということなのだが、記事を見るといろいろ書いてある。 計算モデルがシンプルでも規模が巨大になるとまったく別の問題が生まれてくる。処理すべき情報量が爆発的に増加しているからだ。 例えば協調フィルタリングではユーザーを縦軸に、商品アイテムを横軸にした購買履歴マトリックスについて計算処理を行う必要があるが、あまりに量が多く、素直に実装すると「2

    楽天も情報爆発しています - 武蔵野日記
  • Locality Sensitive Hashing (LSH) Home Page

    LSH Algorithm and Implementation (E2LSH) Locality-Sensitive Hashing (LSH) is an algorithm for solving the approximate or exact Near Neighbor Search in high dimensional spaces. This webpage links to the newest LSH algorithms in Euclidean and Hamming spaces, as well as the E2LSH package, an implementation of an early practical LSH algorithm. Check out also the 2015--2016 FALCONN package, which is a

  • 1