エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
6. 線形多クラス分類 — 機械学習帳
6.1. 多値分類とは# \(\def\bm{\boldsymbol}\)二値分類を拡張し、与えられた事例を3個以上のクラスに分... 6.1. 多値分類とは# \(\def\bm{\boldsymbol}\)二値分類を拡張し、与えられた事例を3個以上のクラスに分類する多値分類を考える。多値分類の応用範囲は広く、世の中の様々なタスクが多値分類問題として取り組まれている。 以下はリアルタイム物体認識の例である。画像(動画)中の全てのピクセルに対して、人間、車、スノーボードなどの物体のクラスを予測することで、画像中に含まれる物体とその位置を認識できる。 機械翻訳も多値分類問題の一種である。翻訳先言語の全ての単語を予測対象の「クラス」と見なす。翻訳元の文と、これまでに翻訳した単語列が与えられたとき、先頭から順に翻訳先言語の単語を分類タスクとして予測していくことで、翻訳文が得られる。 多値分類は我々の知らないところで使われていることもある。以下の例は、ツイートのプロフィールや投稿内容から、そのユーザの属性を推定する例である。推定さ