エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
ARモデルの定常性の判定方法 | マサムネの部屋
定常確率過程を作れるMA(q)モデルを紹介する記事を書きました。 MA(q)モデルでは、q次までの相関係数の... 定常確率過程を作れるMA(q)モデルを紹介する記事を書きました。 MA(q)モデルでは、q次までの相関係数の絶対値がパラメーター次第で それなりにコントロール出来ました。しかし、MAモデルの問題点は、高次(次数N)の相関係数を持つデータを生成するにはMA(N) モデルを考える必要がある事でした。その問題点を解決できるARモデル( autoregressive model ) を紹介します。 AR(1)や、AR(p)は、以下の式で表されるモデルです。\( \epsilon _t \sim { \rm W.N. } (\sigma ^2 ) \)で\( \{ \epsilon _t \} \)が分散\( \sigma ^2 \)のホワイトノイズに従う事を示します。 [AR(1)モデル] $$\begin{eqnarray} y_t&=& c+ \phi _1 y_{t-1} +\epsilon