エントリーの編集
                エントリーの編集は全ユーザーに共通の機能です。
                    必ずガイドラインを一読の上ご利用ください。
【統計学】stanでロジスティック回帰の実行を割と詳しく解説してみる(w/ Titanic dataset) - Qiita
記事へのコメント0件
- 注目コメント
 - 新着コメント
 
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
          - バナー広告なし
 - ミュート機能あり
 - ダークモード搭載
 
関連記事
【統計学】stanでロジスティック回帰の実行を割と詳しく解説してみる(w/ Titanic dataset) - Qiita
StanをつかってTitanicデータをロジスティック回帰してみて、さらに分類の性能評価を少し行ってみるとい... StanをつかってTitanicデータをロジスティック回帰してみて、さらに分類の性能評価を少し行ってみるという記事です。 この記事で使う確率的プログラミング言語「Stan」では分布のパラメーターの推定に、ハミルトニアンモンテカルロ法(HMC法)とNUTSという手法が用いられています。厳密には乱数の発生原理が異なるのですが、もう少しシンプルな手法にマルコフ連鎖モンテカルロ法 メトロポリス・ヘイスティングス法(MH法)があります。この動作原理について、私@kenmatsu4が書いた スライド, 基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法 【統計学】マルコフ連鎖モンテカルロ法(MCMC)によるサンプリングをアニメーションで解説してみる。 の2点がありますので、よければ参考としてください。やっていることのイメージを付ける意図であればMH法とHMC法は大きく違わない
              
            

