エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント2件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
GPT-4 Turboにドキュメントのチャンク分けを任せてみる - EXPLAZA Tech Blog
はじめに こんにちは、LLM Advent Calendar 2023 4日目の記事を担当する_mkazutakaです。よろしくお願い... はじめに こんにちは、LLM Advent Calendar 2023 4日目の記事を担当する_mkazutakaです。よろしくお願いします。 LLM Advent CalendarといってもRAGの話になりますが、ご容赦ください。 企業独自のデータを使ってLLMからの出力を制御する際には、検索拡張生成(いわゆるRAG)が使われます。 RAGの実装方法としては、「PDFからドキュメント情報を読み取り検索エンジンに保存」「ユーザの入力する質問文から関連するドキュメントを検索エンジンから取得」「取得したものをコンテキストとしてプロンプトに含める」という流れが一般的だと思います。 この際、RAGの課題の一つでもあるのですが、検索結果から取得するドキュメントのサイズ(いわゆるチャンクサイズ)をどれぐらいのものにするかというものがあります。チャンクサイズが小さすぎるとLLMは関連するコンテキストから
2023/12/05 リンク