
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
VRAMが少ない環境でLLMを効率的にfine-tuneしてベクトル検索を実現する
LLM周りの基本的な知識とTransformersをもっと扱えるようになりたくて、最近 大規模言語モデル入門を読... LLM周りの基本的な知識とTransformersをもっと扱えるようになりたくて、最近 大規模言語モデル入門を読んでいたのですが、その中で「メモリ効率の良いファインチューニング」という節が面白くて色々自分で試してみていたりしました。ここでは、自分の手元で文章の類似度を計算するモデルをファインチューンして作って見たので、それについて書きたいと思います。 実験環境 Ubuntu 20.04 NVIDIA RTX2080 (VRAM: 8GB) Python 3.11 実験 文章の類似度を計算するモデルを作るために、JGLUEのJSTSというデータセットを利用しました。このデータセットはHugging Face上から取得することが可能で、以下のようなカラムを持ったデータを使うことが可能です。 sentence1: 1つめの文章 sentence2: 2つめの文章 label: 文章間の類似度(0
2024/04/17 リンク