米IBM社が2014年夏に発表した脳型チップ「SyNAPSE」(開発コード名はTrueNorth)の実用化に向けて積極的に動き始めた(図1)。 SyNAPSEは1チップ中に神経細胞のニューロンに相当する機能100万個と、ニューロン間のスイッチであるシナプスに相当する機能2億5600万個を実装した非ノイマン型プロセッサーである。スパイク状の信号を発するニューロンを相互に結合した構造を採る。ニューロンの総数はおよそ蜂の脳に相当する。

強力なライブラリを豊富に備え、科学計算から統計分析、金融工学まで利用が広がるPython。スクリプト言語とは思えない高速性の秘密が、NumPyやSciPyなどのPythonパッケージで広く使われているCythonです。CythonはPythonプログラムの実装を高速化するコンパイラであると同時に、C/C++で書かれたライブラリをPythonから利用できるようにするブリッジとしての役割も果たします。本書はPythonの表現力とC/C++の速さを備えたCythonを使って、高速なシステムを効率的に開発する手法を示します。科学技術計算や統計分析の分野では恒常的にある「Pythonを高速化したい」というニーズに応える一冊です。 はじめに 1章 Cythonの基本 1.1 Python、C、Cythonの比較 1.1.1 関数呼び出しのオーバーヘッド 1.1.2 ループ処理 1.1.3 算術演算 1
[速報]マイクロソフト、機械学習を誰でも使えるようにする「Cortana Analytics Suite」発表 米マイクロソフトは、米フロリダ州オーランドで開催中のイベント「World Partner Conference 2015」で、ビッグデータの保存、管理、分析、機械学習、表示の一連の機能を統合したMicrosoft Azureの新サービス「Cortana Analytics Suite」を発表しました。 サティア・ナデラ氏「Cortana Analytics Suiteは、組織内のすべてのデータをネイティブフォーマットのまま保存し、それをさまざまな仕組み、ストリーム分析や機械学習やSQLやMapReduceなどで分析できる」 Cortana Analytics Suiteは、Microsoft Azureのさまざまな機能を統合しています。例えば、データの保存に「Azure Data
Microsoft Azure ML (Machine Learning) にふれてみた話です。機械学習の知識はないですが、簡単に使えて、すぐに Web サービスなどに使えそうだったので、トライしてみました。 そもそも、どんなことができるかは、提供されている サンプル一覧 を見るとなんとなくわかります。 Microsoft Azure Machine Learning Gallery 映画のリコメンド、Wiki の説明文から似ている会社を探す、手書き文字の認識(予測)、自動車の価格予測など、いろいろあります。 私が今、Azure ML とあわせて使ってみたいデータはツイートデータですが、ここでは、Azure ML のサンプルを元に紹介します。 Azure ML ワークスペースの作成と ML Studio はじめに、manage.windowsazure.com でワークスペースを作成します
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Amazon Machine Learningとは Amazon Machine Learning はAWSが提供している機械学習サービスです。機械学習に詳しくない人でも、簡単に学習モデルを作ったり予測結果を取得したりすることができます。また、S3、Redshift、RDS(MySQL)のデータを学習データとして利用することができ、AWSに構築したシステムのデータをシームレスに分析できることも魅力です。2015/4/9に正式公開され、現在はUS East(N. Virginia)リージョンとEU(Ireland)リージョンでのみ利用でき
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 巷ではDeep Learningとか急に盛り上がりだして、機械学習でもいっちょやってみるかー、と分厚くて黄色い表紙の本に手をだしたもののまったく手が出ず(数式で脳みそが詰む)、そうか僕には機械学習向いてなかったんだ、と白い目で空を見上げ始めたら、ちょっとこの記事を最後まで見るといいことが書いてあるかもしれません。 対象 勉強に時間が取れない社会人プログラマ そろそろ上司やらお客様から「機械学習使えばこんなの簡単なんちゃうん?」と言われそうな人 理系で数学はやってきたつもりだが、微分とか行列とか言われても困っちゃう人 この記事で行うこと
Amazonクラウドはクラウド上で機械学習を提供するサービス「Amazon Machine Learning」を発表しました。 これはAmazon社内でデータサイエンティスト達が使っているのと同じものと説明されており、既存のデータ群から適切な機械学習モデルを作りだし(データからパターンを学習し)、そのモデルを新しいデータに適用して予測などを行っていくというもの。 高いスケーラビリティで日々何十億もの予測を行う能力を備え、リアルタイムに予測を生成できるとされています。 簡単に学習させられ、大規模処理も可能 Amazon Machine Learningのページでは、特長として5つの要素が示されています。 1つ目は、既存データをAmazon S3やRedshift、Amazon RDSなどから簡単に読み込んで学習させることができること。2つ目は、数秒でモデルを作成し、予測までできること。 3つ
みなさんこんにちは。アナリストの荒木です。近い将来さまざまな仕事がロボットに置き換わっていくと多くの人が予想しており、そのコアテクノロジーの一つが機械学習です。GoogleがDeepMindを買収したことで機械学習という言葉も身近になりつつありますが、すでにamazonレコメンドや画像認識などで活躍しています。 そこで今回は、ウェブ担当者が「機械学習ってどんなことをやっているのだろう?」という場合に勉強できるスライドをまとめました。 ↓【無料DL】「SEO内部対策チェックシート」を無料ダウンロードする 機械学習によるデータ分析まわりのお話機械学習でどんなことをしているのかをまとめたスライドです。データのこと・機械学習のこと・評価のこと・分析のことの4部構成で、データマイニングの一連の流れを学ぶことができます。 Deep LearningGoogleの猫認識例で有名になった手法を紹介したスラ
はじめに 今回は自宅の室温予測システムを構築してみました。 前回はいろいろテキトーに書いてたので今回はかなりまじめに書いていきます。 イメージとしてはNHKのNextWorldで描かれてる世界 それをできるだけAzureを駆使して構築してみたいと思います。 システム構成図 システムの構成図はこんな感じ Arduinoで室温を計測 ↓ Azure Mobile Servicesに送信 ↓ SQL Azureデータベースに貯めこむ ↓ そのデータを使ってAzure MLであらかじめデータの傾向を学習しておく ↓ Mobile Service Schedulerで毎朝8時にAzure MLからその日の室温の予測値を取得してTweet ↓ Mobile Service Custom APIを使ってWindowsストアアプリに今日の室温予測値を表示 という感じでいきたいと思います。 データ計測部 I
精度95%以上! ソースコードは指紋、作者はほぼ特定できる2015.02.11 19:0010,967 ほぼドンピシャでバレバレです。 スペースやタブ、大文字やアンダーバーを組み合わせた命名規則、コメント…コードの書き方には、人によってスタイルがありますよね。それはもう指紋のようなもので、それさえ見えれば、誰がコードを書いたかほとんどわかってしまう…そんな驚きの研究結果が発表されました。 米ドレクセル大学、メリーランド大学、プリンストン大学、独ゲッティンゲン大学の共同チームの研究によると、自然言語処理と機械学習によるコード分析により、95%の精度で作者は特定できるそうです。 解析されるのは、レイアウトや語彙の特性と、「抽象構文木(AST)」です。ASTとは、「コードの書き方からまったく影響を受けずに、コードの型の特性をとらえる」もので、つまり、関数の名前、コメント、スペース入れ方などのクセ
ストーリー by hylom 2015年01月30日 14時32分 コード品質判定システムなんかも作れるかも? 部門より Drexel Universityとthe University of Maryland、the University of Goettingen、Princetoの研究者らが、ソースコードを分析し、その記述スタイルからその著者を検出する「code stylometry」なるシステムを開発したそうだ(Slashdot)。 実験では著者が明らかになっているソースコードを自然言語処理や機械学習といった技術を使って分析・学習するシステムを開発。250人の著者、1人の著者当たり平均630行のコードを学習させたところ、95%の成功率で「匿名のコード」の著者を見つけられたという。 また、学習に使用したソースコードの著者数を30人に減らし、また1人あたりのソースコード量を1900行に
この記事はRuby Advent Calendar 2014の13日目の記事です。 初めに Rubyを教育・研究に使おうという試みはRubyの黎明期からありました。 この時期の有名なパッケージとしてはバイオインフォマティクスのBioRubyや地球科学の電脳Rubyプロジェクトが有名です。 先述のBioRubyやGPhys(電脳Rubyの成果物)は現在も更新が続けられており、多数の利用者を抱えています。 しかし全体として見た場合、科学の分野で使われるLL言語としてRubyはPythonやRの後塵を拝している印象があります。 科学計算における均質化、あるいはなぜPythonが着実に他言語のシェアを奪っているか 記事のようにこの分野ではPythonコミュニティが非常に活発で、機械学習など新しい技術は真っ先にPythonで実装されるようになっています。 しかし最近Rubyでも少しずつですが環境が充
人工知能。何十年も前からある言葉だ。国家プロジェクトとして研究されていた時期もあった。それでも完成しなかった。やはり人間の脳は複雑で、それをコンピューターで真似することなど不可能かもしれない。 人工知能。何十年も前からある言葉だ。国家プロジェクトとして研究されていた時期もあった。それでも完成しなかった。やはり人間の脳は複雑で、それをコンピューターで真似することなど不可能かもしれない。 「ところがブレークスルーが起こったんです」と東京大学の松尾豊准教授は熱く語る。 ▶2012年。人工知能研究に火がついた 2012年。人工知能の精度を競う国際的な大会で、カナダのトロント大学がぶっち切りの勝利を収めた。それも1つの大会だけではなく、3つ続けてだ。 「優勝したのは、画像認識、化合物の活性予測、音声認識など3つのコンペティション。まったく異なる領域にも関わらず、今までその分野を専門的に研究していた人
By Keoni Cabral 人間の脳をコンピューターに例えることがありますが、実際の仕組みはお互いに全く異なるためにその実情は「似て非なるもの」です。IBMが新たに開発に成功したチップは、人間の脳が持つニューラルネットワークを再現するという既存のコンピューター技術とは一線を画すものとなっており、高い処理能力と高エネルギー効率が実現されています。 Why IBM’s New Brainlike Chip May Be “Historic” | MIT Technology Review http://www.technologyreview.com/news/529691/ibm-chip-processes-data-similar-to-the-way-your-brain-does/ IBM researchers make a chip full of artificial ne
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く