タグ

ブックマーク / www.riken.jp (7)

  • 脳の基本単位回路を発見 | 理化学研究所

    要旨 理化学研究所(理研)脳科学総合研究センター局所神経回路研究チームの細谷俊彦チームリーダー、丸岡久人研究員らの研究チーム※は、哺乳類の大脳皮質[1]が単純な機能単位回路の繰り返しからなる六方格子状の構造を持つことを発見しました。 大脳はさまざまな皮質領野[2]に分かれており、それぞれ感覚処理、運動制御、言語、思考など異なる機能をつかさどっています。大脳は極めて複雑な組織なため、その回路の構造には不明な点が多く残っています。特に、単一の回路が繰り返した構造が存在するか否かは不明でした。 今回、研究チームは、大脳皮質に6層ある細胞層の一つである第5層をマウス脳を用いて解析し、大部分の神経細胞が細胞タイプ特異的なカラム状の小さなクラスター(マイクロカラム)を形成していることを発見しました。マイクロカラムは六方格子状の規則的な配置をとっており、機能の異なるさまざまな大脳皮質領野に共通に存在して

  • 怖い体験が記憶として脳に刻まれるメカニズムの解明へ | 理化学研究所

    要旨 理化学研究所(理研)脳科学総合研究センター記憶神経回路チームのジョシュア・ジョハンセンチームリーダーらの研究チーム※は、ラットを使った実験で、恐怖体験の記憶形成において従来の仮説は有力であるものの、それだけでは十分ではなく、神経修飾物質の活性化も重要であることを示しました。 私たちは、日常のささいな出来事は簡単に忘れてしまいます。一方、恐怖を感じた体験は記憶として残ります。これまで、記憶の形成は「ヘッブ型可塑性[1]」によって形成されるという説が有力でした。互いにつながった2つの神経細胞(ニューロン)が同時に活動し、その結合(つながり)が強化されることによって記憶が形成される、という仮説です。しかし、この仮説は、実際に記憶を形成している最中の脳内においては、未だ検証されていませんでした。 研究チームは、光遺伝学[2]とよばれる神経活動を操作する技術を用いて、ラット脳内の扁桃体の神経活

  • 真空より低い屈折率を実現した三次元メタマテリアルを開発 | 60秒でわかるプレスリリース | 理化学研究所

    「メタマテリアル」という物質があります。すでにご存じの方も多いと思いますが、日語では“超越物質”ということになるのでしょうか。「光の波長よりも細かな構造を人工的に導入し、その構造と光との相互作用を利用することで、物質の光学特性を人工的に操作した疑似物質」と定義はやや硬くなりますが、要するに「光を自由自在に操ることができるようにする人工物質」のことです。メタマテリアルを使えば、理論的には、屈折率がゼロあるいはマイナスになる自然界ではあり得ない物質を生み出すこともできるとされます。物質境界面で発生する光の反射を除去したり、光を空間中に止めたりといった現象も視野に入ってきています。「透明マントも夢ではない?」いいえ、もう実現間近です。 理研と台湾大学などの研究者は共同で、真空の屈折率1.0よりも低い屈折率0.35を実現した三次元メタマテリアルを作製しました。電磁波(光)に応答するマイクロメート

    真空より低い屈折率を実現した三次元メタマテリアルを開発 | 60秒でわかるプレスリリース | 理化学研究所
  • 真空より低い屈折率を実現した三次元メタマテリアルを開発 | 理化学研究所

    ポイント メタマテリアルを用いて真空の屈折率1.0より低い屈折率0.35を実現 3次元構造により光の入射軸方向に対して完全な等方性を実現 透明化技術や高速光通信、高性能レンズなどに応用できる可能性 要旨 理化学研究所(理研、野依良治理事長)は、真空の屈折率[1]1.0よりも低い屈折率0.35を実現した三次元メタマテリアル[2]の作製に成功しました。これは、理研田中メタマテリアル研究室の田中拓男准主任研究員と国立台湾大学の蔡定平(ツァイ・ディンピン)教授(当時台湾ITRC所長を兼務)らの国際共同研究グループによる成果です。 メタマテリアルは、光を含む電磁波に応答するマイクロ〜ナノメートルスケールの共振器アンテナ素子[3]を大量に集積化した人工物質で、共振器アンテナ素子をうまく設計することで、物質の光学特性を人工的に操作できるという特性を持っています。これまで報告されているメタマテリアルのほと

  • 光で記憶を書き換える | 60秒でわかるプレスリリース | 理化学研究所

    海馬から扁桃体のつながりの可塑性が記憶をスイッチさせることを可能にしている。扁桃体の細胞群は一度「嫌な出来事の記憶」「楽しい出来事の記憶」を保存したら、それらの記憶はそのまま書き換えられない。 ある出来事が起こったときの状況や情緒面などの記憶は、記憶の司令塔である「海馬」と感情や情緒などの記憶に関わる「扁桃体」という2つの脳の領域に保存されます。海馬と扁桃体は脳内ネットワークでつながっていて、体験の状況の記憶は、それぞれの領域の神経細胞群とその「つながり」にエングラム(記憶痕跡)という形で蓄えられます。ただ、その詳しい仕組みは分かっていません。そこで、理研の研究チームは、「嫌な出来事の記憶」のエングラムが「楽しい出来事の記憶」のエングラムに、どのように置き変わっていくのかについて調べました。 実験では、まず、オスのマウスを小部屋に入れ、脚に弱い電気ショックを与えました。マウスは「嫌な出来事

    光で記憶を書き換える | 60秒でわかるプレスリリース | 理化学研究所
  • CDB自己点検の検証について | 理化学研究所

    平成26年6月12日に研究不正再発防止のための改革委員会に資料提出したSTAP細胞に係る研究論文に関する発生・再生科学総合研究センター(CDB)の自己点検の結果について公表いたします。 CDB自己点検の検証について

    frasca
    frasca 2014/06/14
  • 蛍光顕微鏡を用いず一般の顕微鏡で細胞の蛍光観察に成功 | 理化学研究所

    ポイント 一般の顕微鏡でも微弱な蛍光を観察できるアダプターを開発 高出力の水銀ランプやレーザーを使わず、細胞へのダメージを減少 アダプターに絞りを付加し、1つの光源で蛍光と可視光を同時に観察 要旨 独立行政法人理化学研究所(野依良治理事長)は、一般の顕微鏡の光源下に励起フィルターを取り付けるためのアダプターを開発し、蛍光顕微鏡※1を用いずに細胞を蛍光観察することに成功しました。これは理研発生・再生科学総合研究センター(竹市雅俊センター長)ゲノム・リプログラミング研究チームの若山照彦チームリーダー、山縣一夫研究員(現大阪大学微生物病研究所 特任准教授)、近畿大学生物理工学部遺伝子工学科の佐伯和弘教授および大阪大学大学院生命機能研究科の木村宏准教授らの研究グループによる成果です。 現在の生命科学研究では、蛍光色素※2による細胞の染め分けが不可欠です。蛍光色素が発する蛍光を利用することで、細胞内

    frasca
    frasca 2012/02/11
  • 1