タグ

ブックマーク / www.riken.jp (23)

  • 理化学研究所が企画した「一家に1枚 世界とつながる“数理”」が公開

    文部科学省が毎年4月の科学技術週間にあわせて制作する学習資料「一家に1枚」について、令和6年度版のテーマとして理化学研究所が企画した「世界とつながる"数理"」が選ばれ、2024年3月25日にダウンロード用画像が文部科学省の科学技術週間のページに公開されました。 ポスターは全国の小学校・中学校・高等学校、大学等へ配布されている他、今後、科学館や博物館などでも配られる予定です。また、紙面の内容をより掘り下げた特設ウェブサイトも公開する予定です。 制作に当たっては、理研数理創造プログラム(iTHEMS)の永井 智哉 コーディネーターをはじめとした研究者や事務部門の職員を含めた理研所内外の制作チームにより制作監修をしました。 「数学を道具として使うこと」で世界のものごとを理解したり答えを出したりする「数理」をテーマに、数理が私たちの生活でどのような形で使われているのかを、さまざまな事例をもとに紹介

    理化学研究所が企画した「一家に1枚 世界とつながる“数理”」が公開
    fumikony
    fumikony 2024/04/05
  • カマキリを操るハリガネムシ遺伝子の驚くべき由来

    理化学研究所(理研)生命機能科学研究センター 染色体分配研究チームの三品 達平 基礎科学特別研究員(研究当時、現 客員研究員)、京都大学 生態学研究センターの佐藤 拓哉 准教授、国立台湾大学の邱 名鍾 助教、大阪医科薬科大学 医学部の橋口 康之 講師(研究当時)、神戸大学 理学研究科の佐倉 緑 准教授、岡田 龍一 学術研究員、東京農業大学 農学部の佐々木 剛 教授、福井県立大学 海洋生物資源学部の武島 弘彦 客員研究員らの国際共同研究グループは、ハリガネムシのゲノムにカマキリ由来と考えられる大量の遺伝子を発見し、この大規模な遺伝子水平伝播[1]がハリガネムシによるカマキリの行動改変(宿主操作[2])の成立に関与している可能性を示しました。 研究成果は、寄生生物が系統的に大きく異なる宿主の行動をなぜ操作できるのかという謎を分子レベルで解明することに貢献すると期待されます。 自然界では、寄生

    カマキリを操るハリガネムシ遺伝子の驚くべき由来
  • グラフが論理的思考力を高める

    図1 リンクの種類(意味的関係) 文と文の間の関係などはISO(国際標準化機構)の国際標準になっており、図の意味的関係の集合はそれらの国際標準を参考にして策定したもの。こうした関係の集合は言語に依存しないと考えられる。 従って、テキストの代わりにグラフを正式の文書として作成・編集・活用すれば、教育や業務、研究における文書処理(文書の作成・編集・活用)の効率が高まるはずです。さらに、グラフ作成者の批判的思考力が高まるため、文書処理に限らないさまざまな場面で知的生産性が向上すると考えられます。 テキストよりもグラフの方が文書処理の効率が高いのも、グラフを作成すると批判的思考力が高まるのも、グラフが論理的な構造を明示的に表現し、操作を容易にしているからだと考えられます。セマンティックエディタは、論理的な構造の操作をさらに容易にすることで、グラフのこのようなメリットを増大させると期待されます。 し

    グラフが論理的思考力を高める
    fumikony
    fumikony 2023/04/18
  • 脳の意識統合機構を解明

    理化学研究所(理研)脳神経科学研究センター思考・実行機能研究チームの宮健太郎チームリーダー、脳機能動態学連携研究チームの節家理恵子研究員、高次認知機能動態研究チームの宮下保司チームリーダー(脳神経科学研究センターセンター長)(研究当時)の研究グループは、脳の前頭葉の別々の部位で評価される、記憶のなじみ深さに対する自信と新しさに対する自信の情報が後部頭頂葉[1]において融合し、統合された内省意識を生み出すことを発見しました。 研究成果は、内省に起因する精神疾患に対する器質的作用に基づいた生化学・薬理学的治療法の開発や、来るべきデジタルトランスフォーメーション(DX)[2]化社会において重要な基幹技術となる、脳のメタ認知[3]の仕組みに着想を得た効率の良い人工知能機械学習アルゴリズムの構築に貢献すると期待できます。 今回、研究チームは、記憶への確信度[4]に基づいたギャンブル課題[5]遂

    脳の意識統合機構を解明
  • 記憶が特定の脳神経細胞のネットワークに存在することを証明 | 理化学研究所

    記憶が特定の脳神経細胞のネットワークに存在することを証明 ―自然科学で心を研究、心は物質の変化に基づいている― ポイント 記憶痕跡に関連する脳神経細胞のネットワークを光遺伝子で標識 マウスの脳神経細胞を光で刺激して、記憶の呼び起こしに成功 神経系変性疾患や精神神経疾患のメカニズム解明に貢献 要旨 独立行政法人理化学研究所(RIKEN)の脳科学総合研究センターと協力関係にある、マサチューセッツ工科大学の「RIKEN-MIT神経回路遺伝学センター」の利根川進教授の研究室は、マウスの脳の特定の神経細胞を光で刺激して、特定の記憶を呼び起こさせることに成功し、脳の物理的な機構の中に記憶が存在することを初めて実証しました。 私達の懐かしい思い出や恐ろしい記憶は、時間や場所、またはその経験を含むあらゆる感覚とともに、完全に呼び起こすことができる“記憶の痕跡”として脳に残されます。神経科学者たちはこれをエ

  • 学習管理システムからの情報流出の可能性について | 理化学研究所

    このたび、理化学研究所(理研)が職員などの教育・研修に利用している学習管理システム(学習教材の配信や成績などを統合して管理するシステム)に対して不正アクセスがあり、登録されていたサービス利用者の個人情報が流出した可能性が高いと考えられ、所要の対応をとっております。 関係者の皆様にご迷惑とご心配をおかけする事態になりましたことを心よりお詫び申し上げます。 現時点で判明している事実等につきまして、下記の通りご報告いたします。 経緯 9月24日(金)13時頃、理研が利用している学習管理システムのサービス提供業者より「サーバーに対し外部から不正アクセスがありファイルが改ざんされた」との報告がありました。調査報告を受けた結果、理研からサービス提供業者に改善を要求していた既知の脆弱性を突かれ、ファイルの改ざんだけでなく何らかの命令が実行されたことが判明しました。 ファイル改ざんによる命令実行によって学

  • 蒸発するブラックホールの内部を理論的に記述

    理化学研究所(理研)数理創造プログラムの横倉祐貴上級研究員らの共同研究チームは、量子力学[1]と一般相対性理論[2]を用いて、蒸発するブラックホールの内部を理論的に記述しました。 研究成果は、ブラックホールの正体に迫るものであり、遠い未来、情報[1]を蓄えるデバイスとしてブラックホールを活用する「ブラックホール工学」の基礎理論になると期待できます。 近年の観測により、ブラックホールの周辺のことについては徐々に分かってきましたが、その内部については、極めて強い重力によって信号が外にほとんど出てこられないため、何も分かっていません。また、ブラックホールは「ホーキング輻射[3]」によって蒸発することが理論的に示されており、内部にあった物質の持つ情報が蒸発後にどうなってしまうのかは、現代物理学における大きな未解決問題の一つです。 今回、共同研究チームは、ブラックホールの形成段階から蒸発の効果を直

    蒸発するブラックホールの内部を理論的に記述
    fumikony
    fumikony 2020/07/09
  • 理研ニュース No.464 2020年2月発行 - rn202002.pdf

    12 FACE 13 100 14 1 15 TOPICS 2019 16 02 06 GENESIS 10 No.464�2020 2 ISSN 1349-1229 02 RIKEN NEWS 2020 February 0 0.05 0.1 0.15 0.2 健常対照者 統合失調症患者 ベ タ イ ン 濃 度 ( nmol/mg ) DNA 4 21 D2 100 1 D2 3 TL D2 TL 1999 N+ OH コリン脱水素 酵素(CHDH) アルデヒド 脱水素酵素 N+ CHO N+ COOH ベタイン 部分は酵素 ベタインアルデヒド コリン メチオニン S-アデノシル メチオニン ジメチル グリシン BHMT MS システイン シスタチオニン -シンターゼ (CBS) CGL シスタチオニン ビタミン B12/葉酸 -CH3 ベタイン メチオニン回路 ベタインの合成 硫黄転移

    fumikony
    fumikony 2020/02/08
  • 脳の基本単位回路を発見 | 理化学研究所

    要旨 理化学研究所(理研)脳科学総合研究センター局所神経回路研究チームの細谷俊彦チームリーダー、丸岡久人研究員らの研究チーム※は、哺乳類の大脳皮質[1]が単純な機能単位回路の繰り返しからなる六方格子状の構造を持つことを発見しました。 大脳はさまざまな皮質領野[2]に分かれており、それぞれ感覚処理、運動制御、言語、思考など異なる機能をつかさどっています。大脳は極めて複雑な組織なため、その回路の構造には不明な点が多く残っています。特に、単一の回路が繰り返した構造が存在するか否かは不明でした。 今回、研究チームは、大脳皮質に6層ある細胞層の一つである第5層をマウス脳を用いて解析し、大部分の神経細胞が細胞タイプ特異的なカラム状の小さなクラスター(マイクロカラム)を形成していることを発見しました。マイクロカラムは六方格子状の規則的な配置をとっており、機能の異なるさまざまな大脳皮質領野に共通に存在して

    fumikony
    fumikony 2017/11/04
  • 洗濯可能な超薄型有機太陽電池 | 理化学研究所

    要旨 理化学研究所(理研)創発物性科学研究センター(CEMS)創発ソフトシステム研究チームの福田憲二郎研究員(染谷薄膜素子研究室研究員、科学技術振興機構(JST)さきがけ研究者)、染谷隆夫チームリーダー(染谷薄膜素子研究室主任研究員、東京大学大学院工学系研究科教授)らの共同研究グループ※は、洗濯も可能な伸縮性と耐水性を持つ、超薄型有機太陽電池[1]の開発に成功しました。 衣服に貼り付けることができる太陽電池は、生体継続モニタリングに向けたウェアラブルセンサーなどを駆動するための電源として重要な役割を果たします。このような太陽電池の実現には①高い環境安定性、②高いエネルギー変換効率(太陽光エネルギーを電力に変換する効率)、③機械的柔軟性、の三つの要素を同時に満たす必要があります。しかし、従来の有機太陽電池ではこれらを同時に満たすことは困難でした。 今回、共同研究チームは、超柔軟で極薄の有機太

    fumikony
    fumikony 2017/09/20
  • 海馬から大脳皮質への記憶の転送の新しい仕組みの発見 | 理化学研究所

    海馬から大脳皮質への記憶の転送の新しい仕組みの発見 -記憶痕跡(エングラム)がサイレントからアクティブな状態またはその逆に移行することが重要- 要旨 理化学研究所(理研)脳科学総合研究センター理研-MIT神経回路遺伝学研究センターの利根川進センター長と北村貴司研究員、小川幸恵研究員、ディラージ・ロイ大学院生らの研究チーム※は、日常の出来事の記憶(エピソード記憶)が、マウスの脳の中で時間経過とともに、どのようにして海馬から大脳新皮質へ転送され、固定化されるのかに関する神経回路メカニズムを発見しました。 海馬は、エピソード記憶の形成や想起に重要な脳領域です。先行研究により、覚えた記憶は、時間経過とともに、海馬から大脳皮質に徐々に転送され、最終的には大脳皮質に貯蔵されるのではないかとのアイデアがありますが、大脳皮質への記憶の転送に関して、神経回路メカニズムの詳細はほとんど分かっていませんでした。

  • 化学的手法でクモの糸を創る | 理化学研究所

    要旨 理化学研究所(理研)環境資源科学研究センター酵素研究チームの土屋康佑上級研究員と沼田圭司チームリーダーの研究チームは、高強度を示すクモ糸タンパク質のアミノ酸配列に類似した一次構造[1]を持つポリペプチドを化学的に合成する手法を開発しました。また、合成したポリペプチドはクモ糸に類似した二次構造[1]を構築していることを明らかにしました。 クモの糸(牽引糸)は鉄に匹敵する高強度を示す素材であり、自動車用パーツなど構造材料としての応用が期待されます。しかし、一般的にクモは家蚕のように飼育することができないため、天然のクモ糸を大量生産することは困難です。また、一部の高コストな微生物合成法を除くと、人工的にクモ糸タンパク質を大量かつ簡便に合成する手法は確立されていません。 今回、研究チームはこれまでに研究を進めてきた化学酵素重合[2]を取り入れた2段階の化学合成的手法を用いて、アミノ酸エステル

  • 式が書ければ「京」が使える | 理化学研究所

    要旨 理化学研究所(理研)計算科学研究機構コデザイン推進チームの村主崇行特別研究員らと、千葉大学の堀田英之特任助教、神戸大学の牧野淳一郎教授、京都大学の細野七月特任助教、富士通株式会社の井上晃マネージャーらの共同研究グループ※は、スーパーコンピュータ「京(けい)」[1]を用いて、数式のような簡潔な指示を書くだけでスーパーコンピュータでの計算に必要となる高度なプログラムを自動生成できるプログラミング言語「Formura」を開発しました。 スーパーコンピュータでの計算に必要となるプログラムはときに数十万行にも及び、作成やチューニングは大変困難です。一方で、原理的にはシミュレーションしたい自然現象とその離散化法[2]を指定すれば、プログラムは機械的に生成できます。しかし、プログラミングはシミュレーションとコンピュータ双方に深い知識が必要となる非常に高度な作業であり、多数の計算機を協調して動作させ

  • シビレエイ発電機 | 理化学研究所

    要旨 理化学研究所(理研)生命システム研究センター集積バイオデバイス研究ユニットの田中陽ユニットリーダーらの共同研究グループ※は、シビレエイ[1]の電気器官を利用した新原理の発電機を開発しました。 火力や原子力といった既存の発電方法に代わる、クリーンで安全な発電方法の開発が急がれています。そこで近年、生物機能に着目し、グルコース燃料電池[2]や微生物燃料電池[3]などのバイオ燃料電池が開発されていますが、従来の発電法に比べて出力性能が劣っています。 一方、シビレエイに代表される強電気魚は、体内の電気器官で変換効率が100%に近い効率的な発電を行っています。これは、ATP(アデノシン三リン酸)をイオン輸送エネルギーに変換する膜タンパク質が高度に配列・集積化された電気器官とその制御系である神経系を強電気魚が有しているためです。共同研究グループは、これを人工的に再現・制御できれば、画期的な発電方

  • 乱雑さを決める時間の対称性を発見 | 理化学研究所

    要旨 理化学研究所(理研)理論科学連携研究推進グループ分野横断型計算科学連携研究チームの横倉祐貴基礎科学特別研究員と京都大学大学院理学研究科物理学宇宙物理学専攻の佐々真一教授の共同研究チームは、物質を構成する粒子の“乱雑さ”を決める時間の対称性[1]を発見しました。 乱雑さは、「エントロピー[2]」と呼ばれる量によって表わされます。エントロピーはマクロな物質の性質をつかさどる量として19世紀中頃に見い出され、その後、さまざまな分野に広がりました。20世紀初頭には、物理学者のボルツマン、ギブス、アインシュタインらの理論を踏まえて「多数のミクロな粒子を含んだ断熱容器の体積が非常にゆっくり変化する場合、乱雑さは一定に保たれ、エントロピーは変化しない」という性質が議論されました。同じ頃、数学者のネーターによって「対称性がある場合、時間変化のもとで一定に保たれる量(保存量)が存在する」という定理が証

  • アトピー性皮膚炎モデルの原因遺伝子を解明 | 60秒でわかるプレスリリース | 理化学研究所

    「アトピー性皮膚炎」は、日を含めた先進国の乳幼児によくみられる炎症性皮膚疾患です。繰り返す“痒みの強い湿疹”と免疫グロブリン(IgE)の産生上昇などによる“アレルギー様反応”が問題です。遺伝要因と環境要因の複合によって発症すると考えられています。しかし、詳しい発症メカニズムは不明で、発症経過を忠実に再現するモデルマウスはこれまでに存在していませんでした。 理研の研究者を中心とした共同研究グループは、エチルニトロソウレアという「化学変異原」をマウスに投与し、ゲノムに変異を起こすことにより、突然変異マウスを作製しました。50家系、3,000匹のマウスの表現型解析の結果、アトピー性皮膚炎を自然発症するマウスを発見しました。このマウスは清潔な環境で飼育しても、生後8~10週間でアトピー性皮膚炎を発症し、段階を追った病状経過をたどりました。そのため、「多段階進行性アトピー性皮膚炎マウス(Spade

    アトピー性皮膚炎モデルの原因遺伝子を解明 | 60秒でわかるプレスリリース | 理化学研究所
  • 物質と反物質の違いの理論的解明に道筋 | 理化学研究所

    2015年11月20日 理化学研究所 ブルックヘブン国立研究所 コロンビア大学 コネチカット大学 エジンバラ大学 プリマス大学 サウサンプトン大学 要旨 理化学研究所(理研)仁科加速器研究センター 理研BNL研究センター計算物理研究グループの出渕卓グループリーダー、クリストファー・ケリー理研BNLセンター研究員らをはじめとする国際共同研究グループ※は、原子より小さい極微スケールで起こるK中間子[1]崩壊における「CP対称性の破れ[2]」のスーパーコンピュータを用いた計算に成功しました。今回の理論計算は、実験結果との比較をするにあたって最終的な結論を出すための精度がまだ不足していますが、長年の課題であったK中間子崩壊過程におけるCP対称性の破れの理論計算が可能であることを証明しました。 約138億年前、ビッグバンにおいて同数の粒子と反粒子が対生成されたと考えられています。しかし現在の宇宙には

  • 動物の争いでいつ降参するかを決める神経回路 | 理化学研究所

    要旨 理化学研究所(理研)脳科学総合研究センター発生遺伝子制御研究チームの岡仁チームリーダーらの研究チーム※は、動物が争う際にいつ降参するかを決めるのに重要な役割を果たす脳内の神経回路を発見しました。 動物の多くは、物や縄張り、より良い生殖パートナーなどを求めて、同種同士でも争います。通常このような争いは、相手が死ぬまで続けられるのではなく、2匹のうちのどちらかが降参すれば終わります。争いの勝ち負けによってそれぞれの優劣を決める仕組みは、グループ全体の存続を脅かすことなく、グループ内で資源を共有できる点で有効です。しかし、このような争いで優劣を決める際に働く脳内メカニズムは、ほとんど分かっていませんでした。 研究チームは、闘争や逃走、すくみ反応など、動物のさまざまな防御行動に関わるとされる中脳水道周囲灰白質(PAG)[1]に情報を伝える、「手綱核—脚間核神経回路[2]」に注目しました。

  • 電気で生きる微生物を初めて特定 | 理化学研究所

    要旨 理化学研究所環境資源科学研究センター生体機能触媒研究チームの中村龍平チームリーダー、石居拓己研修生(研究当時)、東京大学大学院工学系研究科の橋和仁教授らの共同研究チームは、電気エネルギーを直接利用して生きる微生物を初めて特定し、その代謝反応の検出に成功しました。 一部の生物は、生命の維持に必要な栄養分を自ら合成します。栄養分を作るにはエネルギーが必要です。例えば植物は、太陽光をエネルギーとして二酸化炭素からデンプンを合成します。一方、太陽光が届かない環境においては、化学合成生物と呼ばれる水素や硫黄などの化学物質のエネルギーを利用する生物が存在します。二酸化炭素から栄養分を作り出す生物は、これまで光合成か化学合成のどちらか用いていると考えられてきました。 共同研究チームは、2010年に太陽光が届かない深海熱水環境に電気を非常によく通す岩石が豊富に存在することを見出しました。そして、電

  • 記憶痕跡回路の中に記憶が蓄えられる | 理化学研究所

    要旨 理化学研究所(理研)脳科学総合研究センター 理研-MIT神経回路遺伝学研究センターの利根川進センター長らの研究チーム※は、従来記憶の保存に不可欠だと考えられていたシナプス増強[1]がなくても、記憶が神経細胞群の回路に蓄えられていることを発見しました。 私たちの記憶は、はじめは不安定ですが、記憶の固定化[2]というプロセスを経て、より長期的な記憶に変化します。記憶は記憶痕跡[3]とよばれる神経細胞群とそれらのつながりに蓄えられると考えられています。記憶が長期的に保存されるには、この記憶痕跡細胞同士のつながりを強めるシナプス増強という過程が不可欠であるとされています。実際、実験動物においてシナプス増強を薬剤で阻害すると、過去のことを思い出せなくなることが分かっています。しかし、記憶の固定化プロセスの中で、記憶痕跡を形成する神経細胞群そのものにどのような変化が起きているのかは、まったく分か