タグ

ブックマーク / ksksksks2.hatenadiary.jp (2)

  • VariationalでEnd2EndなDialogue Response Generationの世界 - 終末 A.I.

    この記事は、自然言語処理 #2 Advent Calendar 2019の24日目の記事です。 Open-Domain Dialogueや非タスク指向対話、雑談対話と呼ばれる領域において、発話データのみを使用したEnd2Endな対話応答生成を試みる歴史はそこまで古くなく、[Ritter et al+ 11]や[Jafarpour+ 10]がまず名前をあげられるように、比較的最近始まった研究テーマとなります。 これらは、Twitterなどの登場により、ユーザー間で行われる、ほとんどドメインを限定しない、もしくは多様なドメインにまたがる、大量の対話データを、容易に収集できるようになったことにより、活発に研究されるようになってきました。 初期の研究である[Ritter+ 11]や[Jafarpour+ 10]では、統計的機械翻訳ベースや情報検索ベースの手法でEnd2Endな対話システムを構成して

    VariationalでEnd2EndなDialogue Response Generationの世界 - 終末 A.I.
    incep
    incep 2023/01/25
    “Ritter et al+ 11]”
  • Skip-Thought Vectors を解説してみる - 終末 A.I.

    日は、インスピレーションと予算の枯渇のため、実験ができていなかったので、論文の解説をいたします。まあ、解説とか偉そうなことを言っていますが、主に自分用のメモみたいなものなのですが。 紹介する論文は、「Skip-Thought Vectors」です。この手法は、文(センテンス)をベクトル化する手法の一つで、様々なNLPタスクで好成績を挙げたことで知られている去年の6月にarxivに公開された論文です。ちなみに著者の方が Theano 上で動くソースコードを公開しているので、実際に動かしてみることも可能です。(ただし、学習に時間がかかる) github.com さて、この Skip-Thought Vectorsのですが、最大の特徴は教師なし学習でかなり質の高い文ベクトルを生成できる点にあります。実際に使用する入力データは、文章のコーパス(論文中ではブックコーパス)だけでできてしまいます。計

  • 1