タグ

ブックマーク / note.com/shi3zblog (10)

  • 結局最後、全部、落合陽一が持っていった|shi3z

    前回までのあらすじ 佐渡市長たっての願いで、来はカルテット構成くらいで行う予定だったサテライト公演が25人のオーケストラ編成に。東京から楽器と奏者を25人連れてくるというキチ○イ沙汰に。さらにクラウドファンディングに参加した我々取材班(違う)はコンサートのプログラムを見た時、驚愕した。 「東京公演と全然違う」 だが実際にコンサートが始まると、取材班に衝撃が走った。 「新作、全部新作カットじゃん!!どうなってんの?いつ作ったの?っつーか一番奥に座ってるの落合陽一じゃん」 これまで東京公演ではあくまでもプロデューサー、映像演出という名目で裏方に徹していた落合陽一先生が、ステージの一番奥でVJブースみたいなのを拵えてVJプレイをしているのである。 しかも画面はこれまでで一番でかい超ウルトラ大画面。 オーケストラに負けないド迫力の大画面である。 超巨大スクリーン ゲネプロ時の写真(写真提供:日

    結局最後、全部、落合陽一が持っていった|shi3z
  • 物理学者の逆襲!?Entropixはわずか3億6000万パラメータで1000億パラメータ級の回答を引き出す!Claude-3でも間違う問題を360Mが正しく解く|shi3z

    物理学者の逆襲!?Entropixはわずか3億6000万パラメータで1000億パラメータ級の回答を引き出す!Claude-3でも間違う問題を360Mが正しく解く 物理学者たちがノーベル物理学賞をホップフィールドとヒントンが受賞すると知った時、まあまあ微妙な気持ちになったことは想像に難くない。 我々コンピュータ科学者にとっては、ノーベル賞は全く無縁なものだった。むしろ「ノーベル賞をコンピュータ科学者が取ることは永久にない」と言い訳することさえできた。コンピュータ科学の世界にはチューリング賞という立派な賞があるし、ノーベル賞よりも賞金が高かった京都賞は、アラン・ケイやアイヴァン・サザーランド、ドナルド・クヌースなど、コンピュータ科学者たちが堂々と受賞している。その割には来マイクロチップの最初の設計者である嶋正利などが京都賞にノミネートされていなかったり、サザーランドの弟子であるアラン・ケイの

    物理学者の逆襲!?Entropixはわずか3億6000万パラメータで1000億パラメータ級の回答を引き出す!Claude-3でも間違う問題を360Mが正しく解く|shi3z
  • 驚異の1ビットLLMを試す。果たして本当に学習できるのか?|shi3z

    昨日話題になった「BitNet」という1ビットで推論するLLMがどうしても試したくなったので早速試してみた。 BitNetというのは、1ビット(-1,0,1の三状態を持つ)まで情報を削ぎ落とすことで高速に推論するというアルゴリズム。だから正確には0か1かではなく、-1か0か1ということ。 この手法の行き着くところは、GPUが不要になり新しいハードウェアが出現する世界であると予言されている。マジかよ。 https://arxiv.org/pdf/2402.17764.pdf ということで早速試してみることにした。 オフィシャルの実装は公開されていないが、そもそも1ビット(と言っていいのかわからない,-1,0,1の三状態を持つからだ。 論文著者はlog2(3)で1.58ビットという主張をしている)量子化のアルゴリズム自体の研究の歴史は古いので、BitNetによるTransformerの野良実装

    驚異の1ビットLLMを試す。果たして本当に学習できるのか?|shi3z
  • Apple Vision ProはHoloLensの完成形。現時点での限界値|shi3z

    昔は海外の電波を発する新製品は国内で使用できなかったが、今は総務省の技適の特例制度を利用することでいち早く試すことができる。 「海外法令」云々のところで多少つまづいたが、これはFCC IDを検索すれば解決した。 https://fccid.io/BCGA2117 VisionProのFCC IDはBCGA2117だった。 これで準備完了。 吾輩は、かつては1990年代にキヤノンのMR(混合現実感)システムや理化学研究所のSR(代替現実感)システムを試し、大学院の履修生をやっていた頃はVR特講を受講し、学生対抗国際VR(人工現実感)コンテストに参加したこともある。htc Viveでいくつかのデモを作り(ほとんどは非公開)、Oculusもほとんど持ってるくらいはHMD好きである。片目リトラクタブルHMDで自転車の走行を支援するシステムのデモも2008年頃に作った。 2017年には機械学習したM

    Apple Vision ProはHoloLensの完成形。現時点での限界値|shi3z
    minamishinji
    minamishinji 2024/02/08
    一般人はQuest3がいい、ってことかもなぁ。
  • OpenInterpreter / ついにAIがガチのアシスタントに!これは凄い、というか凄すぎる|shi3z

    凄いものが出てきてしまった。 ChatGPTの「Code Interpreter」が話題になったが、あれはあくまでクラウド上で動いているだけ。それを模してローカルで動作するようになった「Open Interpreter」は、衝撃的な成果である。 Open Interpreterのインストールは簡単。コマンド一発だ $ pip install open-interpreter起動も簡単 $ interpreter -yこれだけでOK。 あとはなんでもやってくれる。 たとえばどんなことができるのかというと、「AppleとMetaの株価の推移をグラフ化してくれ」と言うとネットから自動的に情報をとってきてPythonコード書いてグラフをプロットしてくれる。 凄いのは、ローカルで動くのでたとえばApplescriptを使ってmacOSで動いているアプリを直接起動したり操作したりできる。「Keynot

    OpenInterpreter / ついにAIがガチのアシスタントに!これは凄い、というか凄すぎる|shi3z
  • プレ・シンギュラリティ、もう始まってない?|shi3z

    毎日AIニュースを追いかけていると、当然、波がある。 「今週は落ち着いてるな」とか「今日はやばいな」とか。 今日は、久々に「やばいな」という日だった。 まず、一日のうちにSOTA(State Of The Art)超えしたという大規模言語モデルを三つくらい見た。明らかにおかしい。 さらに、AttentionとMLPを使わない大規模言語モデルの実装も見た。世界を三次元的に解釈して合理的な質問と答えを行う大規模言語モデルもあれば、4ビット量子化した60モデルは8ビット量子化した30Bモデルよりも高性能という主張がなされたり、Googleは論理回路の設計を強化学習で行なっているという。どれもこれもにわかには信じ難いが、今目の前で起きていることだ。 「シンギュラリティ」の定義には、「AIAIを設計し、改良し続ける」という部分があるが、今のAIは人間も考えているが、実はAIAIを設計している部分

    プレ・シンギュラリティ、もう始まってない?|shi3z
  • GPTのモデル構造を可視化した|shi3z

    GPTのモデル構造を目で見てみたい! そんな気持ち、わかるでしょ? 技研フリマをやりながら、どうにかこうにか出力したよ ご覧あれ やり方メモ from transformers import AutoTokenizer, AutoModelForCausalLM from torchviz import make_dot tokenizer = AutoTokenizer.from_pretrained("gpt2") from transformers import pipeline, set_seed generator = pipeline('text-generation', model='gpt2') m= generator.model x= m.generate() y= m.forward(x) image = make_dot(y.logits, params=dict(

    GPTのモデル構造を可視化した|shi3z
  • GPT-4 APIがやってきた!3.5と"性能"を比較する|shi3z

    Waiting Listにもっと時間がかかるかと思ったのだが、予想外に早く(一日)APIのロックが解除された。ただしまずは8Kトークン版のみ。 GPT-3.5が4Kトークンだったから倍の長さのストーリーが出せるということだ。 ただし値段はChatGPT APIの10倍。元に戻った感じ。 これはどっちを使うべきか結構悩むぞ。 こんな感じで呼ぶ % curl https://api.openai.com/v1/chat/completions \ -H 'Content-Type: application/json' \ -H 'Authorization: Bearer APIKEY'\ -d '{ "model": "gpt-4", "messages": [{"role": "user", "content": "宮崎駿について"}], "temperature": 0.7 }'答えはこ

    GPT-4 APIがやってきた!3.5と"性能"を比較する|shi3z
    minamishinji
    minamishinji 2023/03/16
    この言語モデルの可能性と限界を両方感じる。そのあたりが明確になればさらなる進化が見えてくるんだろうな。
  • GPT-4使ってみた|shi3z

    意外とあっさり公開されたGPT-4。 ChatGPT Plus(月額20ドル)に課金すると使えるらしいので早速使ってみた。 動画は以下 動画を聞き流しながら文を読むのを推奨します まず物語を考えさせてみる。 プロンプト Aという主人公がなんらかの出来事を経験して、自分の能力を使ってA’という状態になった  というのが物語である UberEats配達員を主人公とした物語のあらすじをひとつ考えてみてください これに対する回答 物語のタイトル: 『配達の軌跡:A'への変容』 あらすじ: Aは、ごく普通のUberEats配達員として日々働いていた。ある日、彼が配達をしている途中で、謎の小包が彼のバッグに入っていることに気付く。好奇心に駆られたAは、その小包を開けてしまう。中から現れたのは、謎の古びた護符だった。 その護符を手にした瞬間、Aは突如として特別な能力を手に入れる。彼は時間を操作できるよ

    GPT-4使ってみた|shi3z
    minamishinji
    minamishinji 2023/03/15
    これ、面白いなぁ。月額20ドルたけーとか思ってたけど、時間があるなら1ヶ月くらいがっつり遊ぶのも悪くないね。
  • コンピュータは難しすぎる|shi3z

    コンピュータは非常に便利なのだが、ほとんどのコンピュータユーザーがその能力の1%も使えてないのではないか。そんな気がするのだ。 というか、コンピュータの能力が人類の進歩に比べて上がり過ぎてる。 おかげでゲームAIもビデオ編集も手軽になった。 MacBookの新しいCPUが発表されたのだが、40%高速化したというニューラルエンジンを一体全体何に使えばいいのか、人工知能の研究者である吾輩にもわからないので、これを使いこなすことができる人は将来登場するのだろうか。 コンピュータの能力を真に最大限引き出すには、残念ながらプログラマーになるしかない。しかも、マシン語レベルの最適化ができるプログラマーである。 プログラムさえ丁寧につくればコンピュータの持つ潜在能力は圧倒的に高い。だがコンピュータに比べて人間は頭が悪すぎる。 結局のところ、道具がどれだけ進歩しても使う側の人間の想像力が追いつかないと全

    コンピュータは難しすぎる|shi3z
  • 1